Midterm 3

Potentially useful equations:

Gravitational potential energy: $E_{\mathrm{g}}=m g h ;$ Kinetic energy: $K E=m v^{2} / 2$
Density of gas: $\rho=\frac{M P}{R T}$; Result of kinetic theory of gases: $P V=\frac{1}{3} N m v^{2}$
Mean free path of gas molecules: $\lambda=\frac{1}{\sqrt{2} n_{V} \pi d^{2}}$
Maxwell-Boltzmann distribution: $f(v)=4 \pi v^{2}\left[\frac{M}{2 \pi R T}\right]^{3 / 2} \exp \left[-\frac{1}{2} \frac{M v^{2}}{R T}\right]$
Van der Waal equation: $\left[P+a\left(\frac{n}{V}\right)^{2}\right](V-n b)=n R T$; "Compressibility Factor": $z=\frac{P V}{n R T}$
Work in reversible isothermal processes: $w=-n R T \ln \frac{V_{\infty}}{V_{1}}=-n R T \ln \frac{P_{1}}{P_{\infty}}$
Molecular heat capacity of ideal monoatomic gases: $C_{V, m}=\frac{3}{2} R ; \quad C_{P, m}=\frac{5}{2} R$
Permutation of n different items: $n!=n(n-1)(n-2) \ldots 1$
Combination: choosing L items from N items: ${ }^{N} C_{L}=\frac{N!}{(N-L)!L!}$
Number of microstates for an ideal gas: $\Omega=g V^{N} U^{3 N / 2}$

Potentially useful constants:

$g=9.8 \mathrm{~m} / \mathrm{s}^{2} ; 1 \mathrm{~atm} \sim 101325 \mathrm{~Pa} \sim 760 \mathrm{~mm} \mathrm{Hg} ; 1 \mathrm{bar}=10^{5} \mathrm{~Pa}$
$R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}{ }^{-1} \mathrm{~K}^{-1} ; 1 \mathrm{~mol}$ gas occupies 22.4 L at $0^{\circ} \mathrm{C}$
$k_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~K}^{-1}$
$T\left(0^{\circ} \mathrm{C}\right)=273.15 \mathrm{~K} ; 1 \mathrm{cal}=4.18 \mathrm{~J}$
Density of liquids: $\rho(\mathrm{Hg})=13.6 \mathrm{~g} / \mathrm{mL} ; \rho\left(\mathrm{H}_{2} \mathrm{O}\right)=1.00 \mathrm{~g} / \mathrm{mL}$
Relative atomic mass: $\mathrm{H}=1, \mathrm{C}=12, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{Cl}=35.5$
$N_{\text {A }}=6.02 \times 10^{23}$

Full score of this exam is 100 points.

\qquad
Part I. Multiple choices (5 points each question; only one correct answer. Please circle correct answer)

1. Recall that the maximal range of lift for a suction pump at 1 atm is 10.3 m for water. The maximal range of lift at 1 atm for pumping petroleum ($\rho=0.80 \mathrm{~g} / \mathrm{mL}$) is (\qquad
A. 10.3 m
B. 8.24 m
C. 12.9 m
D. 760 mm
2. In the van der Waal equation (Page 1), the factor a is introduced to correct for: ()

B. the effects of the kinetic energy of the molecules
C. the momentum changes when molecules collide
D. the effects of forces of attraction between molecules
E. statistical variations resulting from the crooked paths traveled by molecules
3. Which of the statements below is true for a CO_{2} fire extinguisher? ()
A. The gas temperature drops when operated in vacuum

B. The gas temperature increases when operated in vacuum
C. The gas temperature drops when operated at 1 atm
D. The gas temperature increases when operated at 1 atm
E. May be used for putting out fire of magnesium
4. For below unbalanced reactions, which reaction has $\Delta U=\Delta H$? ()

B. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~s})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{CO}_{2}(\mathrm{~g})+1 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

C. $\mathrm{C}(\mathrm{s})+2 \mathrm{~S}(\mathrm{~s}) \rightarrow \mathrm{CS}_{2}(\mathrm{~g})+2$
D. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})-\& \mathrm{SO}_{3}(\mathrm{~g})-1$
5. For an ideal gas system, which of the below is NOT a state function? ()
A. Internal energy U
B. Heat q
e. Enthalpy H
D. Temperature T
E. Entropy S

$$
\Delta T=0 \Rightarrow \Delta U=0 \text { so } q=-\omega \text {. }
$$

6. At 1 atm , an ideal gas system is expanded in volume through an isothermal process. We conclude: () A the system absorbed heat from the surroundings.
7. The system released heat to the surroundings.

C. There is no heat exchange between the system and the surroundings.
D. No conclusion can be drawn about the heat exchange between the system and the surroundings.
8. For 6 gas molecules in the two-chamber system discussed in class. What is the statistical probability for all molecules being in the left chamber?
)
A. 0
B. $1 / 720$
C. 1/36
D. $1 / 64$

Part II. Questions. Short answers are fine as long as to the point.
For full credit please show your work and respond bellow each question. Work in the margins will not be graded
Question 1. (6 points per question) Analysis: Are the following statements true or false? For each statement, first state unequivocally whether the statement is true or false (2 points). Afterwards, for statements you answer "true", discuss the mechanisms. For statements you answer "false", either discuss the mechanisms, or give one specific counter-example to disprove the statement. (4 points for the explanation)
(a) The velocity distribution of N_{2} at a given temperature may be indistinguishable from that of O_{2} at a different temperature.

$$
\text { True } \quad M M=28
$$

The veloully ditir inction of N_{2} at T_{1} is lased on the factors M and T whichare constants. Becuie O_{2} nasa nigher $\mathrm{mmilir}_{\mathrm{m}}=32$ mas, thus a smaller velouly avenge and a stainer distribution. But, the O_{2} iata different femperatere and may umpires that therejst has to beone possibity. Th, it T_{2} or $T_{O_{2}}$ is higher than $T_{1}=T_{2} N_{2}$ then ward carteact intemperatore would, noreuse the vary distribationand boradentwecurve. tire equation, the feu) isdoperdent (b) For an ideal gas that does not go through any chemical the reverse in motor mass. Δ on Thus if $\frac{M_{1}}{T_{1}}=\frac{M_{2}}{T_{2}}$ turthe

False. distribuhons beindisting shale
Becuce $\triangle U$ isonly dependerton $\triangle T$

$$
\Delta H=\Delta(H P N M)=\Delta U+\Delta\left(A V^{2}\right.
$$

$\Delta U=O$ at $\Delta H=O(P))$. Gosecn sill expand dr son isturnally so ΔH doemot
hare to be O as $\Delta(P V)$ for expassnsesd $\# O$ if its expending, orecovontercound
(c) The standard enthalpy of formation is 0 for any pure element. is it it is expanding aganstacustant prase,
then, $\Delta H=\Delta(P V)=+P_{\text {ext }} \triangle V$ False.
For the pie element Br , the entralpyot formats nillbe >0. Thirds heavectre ΔH_{f}° isbaredon the noststave corot the element at latin add a guentemploscally $25^{\circ} \mathrm{C}$)
poe element Br , Hos $4 . \mathrm{y}^{2} \Delta H_{f}{ }^{\circ}$ necouss the Br atoms dresess stable thant band trad on ΔU will be $\Delta H^{\circ} f$ whens bused
(d) Number of microstates, Ω, is an is toned between $B r_{2}$. The, beck a (d) Number of microstates, Ω, is an extensive function that depends linearly on system size , even ' grater so st hes $\Delta 0$ False
Ω is a function of U, V, N and hastietion $\Omega(U, V, N)=g)$ Ifidd:d depart ineryin , size than $\Omega(2 v)$ =oricikequal to $2 \Omega(V)$ aneclense functinntrathepends ivearlyon sizsem ifealse
\qquad
ID \# \qquad
Question 2. (8 Points) A glass vessel weighted 40 g when pumped to vacuum, 40.14 g when filled with N_{2} at 1 atm , and 40.30 g when filled with an unknown gas X at 1 atm . What is the molecular weight of gas X ?

$$
\begin{aligned}
& 40.14-40=m_{N_{2}} \\
& \frac{M_{N_{2}}}{M_{N_{2}}} \cdot R_{1}=\frac{M_{2} R_{2}}{P_{2}}=\frac{M_{N_{2}} \cdot}{M M_{N_{2}} P_{N_{2}}}=\frac{M_{x}}{M M_{x} \cdot P_{x}} \rightarrow
\end{aligned}
$$

Question 3. (8 Points) Given that the internal energy of a monoatomic ideal gas system is $U=3 / 2 n R T$, calculate the root-mean-square (RMS) velocity of N_{2} molecules in this room (assume $T=300 \mathrm{~K}$). Explain why the actual diffusion speeds of molecules are much slower than this value.

$$
\begin{aligned}
& U=K E=\frac{3}{2} n R T=\frac{1}{2} M m \cdot \overline{V^{2}} \\
& \sqrt{V^{2}}=\sqrt{3 R T \cdot \frac{n}{\sqrt{m}} \quad \frac{n}{N m}=M \text { dor } \operatorname{mos} x=M}
\end{aligned}
$$

$$
\text { so } \begin{aligned}
\sqrt{V^{2}} & =V_{\text {rms }}=\sqrt{\frac{3 R T}{M}}=\sqrt{\frac{3.8 .3145-300}{28 \mathrm{~g} / \mathrm{mol} \cdot \frac{16 g}{100 \mathrm{~g} \mathrm{~g}}}} \\
& V_{\text {rms, }}=516.96=520 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Actual difforim speeds are alotslowertrontins becusein a grenconterarof Nz, tureare aloft of collisions which chargetre velocity ane nolealas, thus, becoususter velocrychazes sootier the ΔX ortechang of its position is not $=\Delta V \cdot t$ and the Nave ${ }_{\text {Page }} 4$ will besmaller than the V rinse apathy example line

Name, Section \# \qquad Miunvelli, 30330362el ID \# \qquad
Question 4. (10 Points) Octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ is a major component of gasoline. Its combustion can be written as:

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+25 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

(a) (6 points) At $0^{\circ} \mathrm{C}$, what volume of air is needed to burn 1 mol octane? Assume that the partial pressure of O_{2} in the air is 0.20 atm . Keep two significant figures for the final result.

assumpluistract
theist later

$$
\begin{aligned}
& \text { tusisat late } \\
& \text { ar or SiP } \\
& \text { so } P_{\text {ar }}=1 \mathrm{Amm} \\
& \mathrm{Pol}_{02}=0,2 \mathrm{am}
\end{aligned}
$$

$$
\begin{aligned}
& P_{\mathrm{O}_{2}}=0.2 \mathrm{~atm} \\
& \psi_{\mathrm{O}_{2}}=\frac{\mathrm{PO}_{\mathrm{O}}}{\mathrm{Partr}}=\frac{0.2}{(\mathrm{~b})}=0
\end{aligned}
$$

(b) (4 points) Given $\Delta_{f} H^{\circ}\left[\mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})\right]=-250 \mathrm{~kJ} / \mathrm{mol}, \Delta_{f} H^{\circ}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]=-286 \mathrm{~kJ} / \mathrm{mol}$, $\Delta_{f} H^{\circ}\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=-394 \mathrm{~kJ} / \mathrm{mol}$, calculate $\Delta_{f} H^{\circ}$ of the reaction.

Question 5. (15 Points) Storage and transport of energy is a challenge of modern society. What is the amount of water that is needed to store $2.0 \times 10^{6} \mathrm{~J}$ energy in the following ways? You may refer to formulas and values on the first page. Give answers in $\mathbf{~ k g}$.
(a) (5 points) Store the energy as gravitational potential energy by elevating $x \mathrm{~kg}$ of water to a height of 10 m .

$$
\begin{aligned}
|q|=|\omega| \Rightarrow \omega=m g h= & x \mathrm{~kg} \cdot 9,8 \cdot 10 \mathrm{~m}=2.0 \times 10^{6} \\
& \times \mathrm{kg}=20400 \mathrm{~kg} \\
x= & 2.0 \times 10^{4} \mathrm{~kg}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{rlrl}
18 \cdot-286+16 \cdot-394 & -0-2(-250) & =-10,952 \\
f-1(000 \mathrm{~kJ} / \mathrm{mi} & =A \mathrm{H} \mathrm{Hin}
\end{array}
\end{aligned}
$$

\qquad
ID \# \qquad
(b) (5 points) Store the energy by heating up $x \mathrm{~kg}$ of water from room temperature $\left(25^{\circ} \mathrm{C}\right)$ to $50^{\circ} \mathrm{C}$.

$$
\begin{aligned}
q=200 \times 10^{6} \mathrm{~J} & =x \mathrm{~kg} \cdot \frac{1000 \mathrm{~g}}{1 \mathrm{~kg}} \cdot\left(4.1 \mathrm{JJ} / \mathrm{g} \cdot 1{ }^{\circ} \mathrm{C}\right) \cdot\left(80^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) \\
x & =191.392 \mathrm{~kg}=190 \mathrm{~kg} \mathrm{H2O}
\end{aligned}
$$

(c) (5 points) Store the energy by splitting $x \mathrm{~kg}$ of water into H_{2} and O_{2} at 1 atm . $\Delta_{f} H^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)=-286 \mathrm{~kJ} / \mathrm{mol}$.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{~A}^{\circ} \mathrm{H}^{\circ}(\mathrm{H}, \mathrm{O})=-2 e 66_{\mathrm{fl}}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta H=q \quad x_{y}=0.1258=0.12 \mathrm{~kg}+60=x .
\end{aligned}
$$

