University of California, Berkeley
Physics 7B, Fall 2008 (Xiaosheng Huang)
Midterm 2
Monday, 11/3/2007
6:30-8:30 PM

Name: $\qquad$ D/L Section: $\qquad$

S 5 1) ( 20 pts .) A thin rod of length $l$ carries a total charge $Q$ distributed uniformly along its length. Determine the electric field along the axis of the rod starting at one end. That is, find $\mathbf{E}(x)$ for $x \geq 0$ in the figure below, both its direction and magnitude.


Answer:

2. 2) (20 pts.) A flat ring of inner radius $R_{1}$ and outer radius $R_{2}$ (see the figure below) carries a uniform surface charge density $\sigma$.

a) Find the electric potential along the axis (the $x$ axis), assuming the electric potential at infinity is zero.

Answer:

b) Find the magnitude and the direction of the electric field along the axis by using the relationship between the electric potential and the electric field.

Answer: $\square$
3) ( 25 pts.) A capacitor consists of two concentric spherically-shaped conductors. The smaller one has radius $a$, and the larger one has inner radius $b_{1}$ and outer radius $b_{2}$.


If we put $-q_{1}$ on the smaller conductor and $+q_{2}$ on the larger one, assuming $q_{2}>q_{1}>0$, find the electric field (magnitude and direction) for a) $r<a$;
b) $a<r<b_{1}$;

Answer:

c) $b_{1}<r<b_{2}$;

Answer:

d) $r>b_{2}$;

Answer:

$e)$ use the picture below and words, if necessary, to describe how the charge is distributed on the two conductors.

Answer:

$f$ ) If $q_{1}=q_{2}$ (but the two conductors still carry opposite charge), find the electric potential difference between the two conductors.

Answer: $\square$
$g$ ) Find the capacitance of this capacitor.

Answer:
$\square$
[min- 4) ( 15 pts .) Two resistors when connected in series to a battery with voltage $V_{0}$ use one-fourth the power that is used when they are connected in parallel. If one resistor has resistance $R_{l}$, what is the resistance of the other?

Answer:
$\square$

4x 5) ( 20 pts ) A conductor is charged after it is brought into contact with a metal plate, which initially had charge $Q$. The conductor now has charge $q$.

Suppose the electric potential of the metal plate after the contact is $V$ relative to infinity. (That is, take the electric potential to be zero at infinity.)
a) What is the electric potential of the conductor after the contact?

Answer: $\square$
b) Find the charge on the metal plate after the contact.
c) Find the capacitance of the conductor, $C_{c}$.

Answer: $\square$
d) Find the capacitance of the metal plate, $C_{p}$.

Answer:

$e)$ Find the ratio $C_{p} / C_{c}$ in terms of $Q$ and $q$.

Answer: $\square$

After the metal plate is recharged to the same initial charge $Q$, the conductor is brought into contact with the metal plate a second time. Suppose the metal plate loses an amount of charge $x$.
$f$ ) Find the charge on the conductor.

Answer: $\square$
g) Find $x$ in terms of $Q$ and $q$.

Answer:


We can add more charge to the conductor by repeatedly contacting it with the metal plate, which after each contact is recharged to the same amount of charge $Q$, until the charge on the conductor reaches a maximum.
h) What is the ultimate charge on the conductor?

Answer: $\square$

