Problem 1: Short Ans
a) B-CSTR

CSTR operation dilutes the feed and therefore operates at a fixed lower concentration and since the rate is inversely +2 paportional to concentration (ie or negative coder kinetics), the ate is higher for a CSTR than that of a PER.
b) A - constant vol CSTR

- Since $\delta>0 /$ moles avegenevated so volume of the veaetor will expand and concentration will be diluted in a canst. pressure BSTR.
OR - Syolmoles ave G2 Grated but the constant vol BSTR will not allow for the reactor volume change that will otherwise
dilute the concentrations
C) C - equivalent (+4)
- Both reactors are at constant pressure so they accanodate change in volume / volumetric flow rates the same way and or. a volume element io a PFR is its don batch reactor.
" "PFR in space is analogens to a batch reactor in time"
d) B-cost. PBSTR

$$
K_{c}=\frac{[R]^{2}[S]}{[P][Q]}=\frac{\frac{N_{R}^{2}}{V^{2}} \cdot \frac{N_{S}}{V}}{\frac{N_{R}}{V} \cdot \frac{N_{Q}}{V}}=\frac{N_{R}^{2} N_{S}}{N_{P} \cdot N_{Q}} \cdot \frac{1}{V} \text { if } V T \text {, products } \uparrow
$$

- If volume is allowed to increase since $\stackrel{+2}{\delta>0}$ and ir constant pressure BSTR, the \# of moles of product has to increase to maintain the value of $\mathrm{Ke}+2$
OR "According to Le chatelier's principle, an increase in pressure (i nthe case of $\delta>0$, canst. vol) will favor the side of less moles produced, which is the reverse reaction.
E. elementary, reversible gas phase $r \times n$ in flow reactor

$$
A \xrightarrow[k-1]{\stackrel{k_{1}}{\longleftrightarrow}} 2 C
$$

$$
K_{e Q}=\frac{K_{1}}{K-1}=1.25 \frac{\mathrm{~mol}}{\mathrm{c}^{2}}
$$

isothermal $\left(T=T_{0}\right)$

$$
\begin{aligned}
& y_{n 0}=1 @ \quad \begin{array}{l}
T=400 \mathrm{k} \\
p=10 \mathrm{~atm}
\end{array}
\end{aligned}
$$

$$
k=0.092 \frac{\text { L. atm }}{\text { K. mol }}
$$

Ye =?
need to take into account Δ moles and change in volunctric flow

$$
-r_{A}=K_{1} C_{A}-K_{-1} C_{C}^{2}=K_{1}\left[C_{A}-\frac{C_{c}^{2}}{K_{e R}}\right]
$$

(a) equilibrium, $-r_{A}=0$ thus $C_{A}=\frac{C_{c}^{2}}{K_{e Q}}$ or $K_{e Q}=\frac{C_{c}^{2}}{C_{A}}$
can use a stoichiometric table if needed

$$
1
$$

$C_{A}=\frac{F_{A}}{v} \quad C_{C}=\frac{F_{C}}{v}$ and $v=v_{0}\left(1+\varepsilon_{X_{\text {eq }}}\right)$ whore $\varepsilon=y_{n+0} \delta$

$$
C_{A}=\frac{C_{A_{0}}\left(1-X_{\text {eq }}\right)}{\left(1+X_{\text {eq }}\right)}
$$

$$
C_{c}=\frac{2 C_{A_{u}} X_{e q}}{\left(1+X_{\text {eq }}\right)}
$$

$$
C_{A O}=\frac{y_{A O} P}{R T}
$$

$$
C_{\text {HO }}=\frac{(1)(10 \mathrm{~atm})}{\left(0,082 \frac{\mathrm{latm}}{\mathrm{~mol} . \mathrm{k}}\right)(400 \mathrm{k})}
$$

$+1$

$$
C_{A O}=0.305 \frac{\mathrm{~mol}}{L}
$$

$$
\begin{aligned}
& K_{e q}-K_{e q} X_{e q}^{2}=4 C_{A_{0}} X_{\text {eq }}^{2} \\
& K_{e q}=X_{e q}{ }^{2}\left(4 C_{A_{0}}+K_{e q}\right) \\
& X_{\text {eq }}=\sqrt{\frac{K_{e q}}{4 C_{A_{0}}+K_{e q}}}
\end{aligned}
$$

$$
\text { plog in values } \rightarrow \quad X_{\text {eq }}=\sqrt{\frac{4.25 \frac{\mathrm{~mol}}{\mathrm{~L}}}{4\left(0.305 \frac{\mathrm{~mol}}{\mathrm{~L}}\right)+1.25 \frac{\mathrm{~mol}}{\mathrm{~L}}}}
$$

$$
+1 \quad X_{\text {eq }}=0.71
$$

PROBLEM \#2 (15 PTS)
Problem 2
Gas phase $R \times n$, in a PFR

$$
\left\{\begin{array}{l}
\quad A(g)+2 B_{(g)} \rightarrow 4 D_{(g \rightarrow l)} \\
V_{0}=5 L / \mathrm{min} \\
F_{A 0}=F_{B 0} \\
P_{\text {tot }}=4 \mathrm{~atm} \\
P_{\text {rap, }, D}=1 \mathrm{~atm}
\end{array}\right.
$$

Before Condensation After Condensation

If $X A$ was used instead of $X B$, and no other Where F_{T}^{\prime} is the total molar flow mistakes were made, 2 points deducted out of 4 rate after condensation
C)
D will condense when its partial pressure reaches its vapor pressure

$+1$
This may also be solved by $\mathrm{FT}=\mathrm{FT}^{\prime}$
when $y_{D}=\frac{P_{\text {rap, } D}}{P_{\text {Tot }}}=\frac{1 \mathrm{~atm}}{4 \mathrm{~atm}}=0.25$
When molar fraction of D in gas reaches 25%. condensation happen
$y_{D}=\frac{F_{D}}{F_{T}}=\frac{2 F_{B_{0}} X_{B}}{F_{A}+F_{B}+F_{D}}=\frac{2 F_{B_{0}} X_{B}}{F_{B_{0}}\left(1-0.5 X_{B}\right)+F_{B_{0}}\left(1-X_{B}\right)+2 F_{B_{0}} X_{B}}$

Correct FT +1
Correct FD (or FT') +1

$$
=\frac{2 F_{B_{0} X_{B}}}{2 F_{B O}+0.5 F_{B_{0}} X_{B}}
$$

$$
=\frac{2 X_{B}}{2+0.5 X_{B}}
$$

Hence when

$$
\begin{aligned}
& 0.25=\frac{2 X_{B}}{2+0.5 X_{B}} \quad \text { condensation begins } \\
& 0.5+0.125 X_{B}=2 X_{B} \\
& 1.875 X_{B}=0.5
\end{aligned}
$$

$$
\begin{aligned}
& X_{B}=0.27 \\
& \text { at } 27 \% \text { conversion of } B
\end{aligned}
$$

Correct final solution +2
If $X A$ was used instead of $X B$, and no other mistakes were made, 2 points deducted out of 5

+1 For correct setup

$$
\begin{aligned}
& \frac{\left(P_{T} V\right)}{\left(R_{0} V_{0}\right)}=\frac{F_{T} R T}{F_{T_{0}} R T_{0}} \quad F_{T}^{\prime} \text { is the total molar flow rate } \\
& \text { after condensation }
\end{aligned}
$$

$$
\frac{V}{V_{0}}=\frac{F_{T}^{\prime}}{F_{T_{0}}}=\frac{F_{T}^{\prime}}{2 F_{B_{0}}} \quad \begin{aligned}
& \text { +2 For correct expression of } F T^{\prime} \\
& \text { +1 For correct expression of FT0 }
\end{aligned}
$$

$$
F_{T}^{\prime}=F_{A}+F_{B}+F_{D}=F_{B_{0}}\left(1-0.5 X_{B}\right)+F_{B_{0}}\left(1-X_{B}\right)+0.25 F_{T}^{\prime}
$$

$$
0.75 F_{T}^{\prime}=2 F_{B_{0}}-1.5 F_{B_{0}} X_{B}
$$

$$
F_{T}^{\prime}=2.67 F_{B_{0}-2} F_{B_{0}} X_{B}=F_{B_{0}}\left(2.67-2 X_{B}\right)
$$

$$
\text { hence back to } \frac{v}{V_{0}}=\frac{F_{T}^{\prime}}{2 F_{B_{0}}}=\frac{F_{B_{0}}\left(2.67-2 X_{B}\right)}{2 F_{B_{0}}}=\left(1.33-X_{B}\right)
$$

$$
\Rightarrow V=V_{0}\left(1.33-X_{B}\right)
$$

+1 for correct final answer
Note that $y D$ needs to be written out in actual numbers since $y D$ is not given in the problem

If $X A$ was used instead of $X B$, and no other mistakes were made, 2 points deducted out of 5

PROBLEM \#3 (25 PTS)

$$
A \rightarrow 2 B+2 C, r_{\text {net }}
$$

Elementary reactions:
$A \underset{k-1}{\stackrel{k_{1}}{\rightleftarrows}} I_{1}+2 B \quad r_{1}, r_{-1}$
$I_{1} \xrightarrow{k_{2}} 2 I_{2} \quad r_{2}$
$I_{2} \xrightarrow{k_{3}} C$
r_{3}
a)

$$
\begin{aligned}
& A \underset{k-1}{\stackrel{k_{1}}{\leftrightarrows}} I_{1}+2 B \\
& I_{1} \stackrel{k_{2}}{\leftrightarrows} 2 I_{2} \\
& I_{2} \xrightarrow{k_{3}} C \\
& \frac{r_{1}-r_{-1}}{1}=\frac{r_{2}}{1}=\frac{r_{3}}{2}
\end{aligned}
$$

Total of 3 points, 1 point deducted for each mistake/ unclearity. (ex. 1 sigma value or 1 label wrong on the diagram)

b) $r_{\text {net }}=r_{2}=k_{2}\left[I_{1}\right]$
+1 for a correct expression for setup of
ret (with correct stoichiometry) net (with correct stoichiometry)
PSSH for $I_{1} \quad$ net can also be expressed as net $=0.5^{*} r 3$
$\frac{d[I]}{d t}=0=k_{1}[A]-k_{-1}\left[I_{1}\right][B]^{2}-k_{2}\left[I_{1}\right]$

$$
\left[I_{1}\right]=\frac{k_{1}[A]}{\left(k_{-1}[B]^{2}+k_{2}\right)}
$$

PSSH to find correct expression for [11] +3

If chosen to obtain ret from ret $=0.5^{*}$ rn;
PSSH on both intermediates needed
+1 for correct expression for I2
+2 for correct expression for I1
partial credit +1 rewarded for correct ret:
C) rhet $=r 2$ or net $=0.5^{\star} r 3$
In case that $Q E$ applies for step 1

$$
\begin{gathered}
\frac{k_{1}}{k_{-1}}=\overline{\underline{K}}_{1}=\frac{[B]^{2}\left[I_{1}\right]}{[A]} \\
{\left[I_{1}\right]=\frac{\mathbb{E}_{1}[A]}{[B]^{2}}}
\end{gathered}
$$

From b) PSSH The concept of comparison of the terms in the denominator $+5^{-}$

$$
r_{\text {net }}=\frac{k_{1} k_{2}[A]}{k_{-1}[B]^{2}+k_{2}}
$$

From C) QE

$$
r_{\text {net }}=\frac{k_{2} \mathbb{E}_{1}[A]}{[B]^{2}}=\frac{k_{2} k_{1}[A]}{k_{-1}[B]^{2}}
$$

They are the same if $k_{4}[B]^{2} \gg k_{2}$
Correct and clear logic +2
Note that $\mathrm{k}-1[\mathrm{~B}]^{\wedge} 2$ and k 2 need to be compared (or r-1 vs ra), the sole comparison of $\mathrm{k}-1$ and k 2 is incomplete.

Sole comparison of k-1 and k2 leads to a deduction of 2 points
e) QE for step 1
\#

Each mistake/unclearity -1 out of 5 points. Including sigma values, labeling of rates.

$$
r_{\text {net }}
$$

f) Step 1 is irreversible

Each mistake/unclearity -1 out of 5 points. Including sigma values, labeling of rates.
$r-1$ must be included in this diagram(or an explanation in words) 2 points deducted for not labeling r-1

Problem 4
$v=\alpha V+\beta \quad \xi$ meaning the volumetric flow vale is changing as it moves down each Volume element $d V$. for $\tau=\frac{v}{v}$ residence time.
a) $\alpha=0$
, $v=\beta \quad \xi$ volumetric flow vale is constant therefore $\tau_{\text {total }}=\frac{V_{f}}{v} \Rightarrow \tau_{\text {total }}=\frac{V_{f}}{\beta}$
b) $\alpha>0$
see Matt's (Fall 2017) solution from recent announcement

PROBLEM \#5 (25 PTS)

+1 A. from stoichiometry, know $\frac{r_{A}}{-2}=\frac{r_{B}}{+1} \rightarrow \begin{aligned} & r_{A}=-2 r_{B} \\ & +1 / 2 \text { for negative sign } \\ & +1 / 2 \text { for having two }\end{aligned}$
+4 B. overall mass balance on all species given: $\rho=\rho_{0}$
in - out + gen $=$ accum
$+1 v_{s} \rho_{0}-0+0=\frac{d(\rho V)}{d t} \quad \rho=\rho_{0}$, cancel out
$\frac{d V}{d t}=V_{s}$
+1 correct volume bounds

$$
\begin{aligned}
& \text { using } \frac{d C_{n}}{d t} \quad \frac{d N_{s}}{d t}=C_{\text {so }} v_{s} \quad \text { and } \quad \frac{d N_{s}}{d t}=\frac{d\left(C_{S} V\right)}{d t} \\
& C_{S} \frac{d V}{d t}+V \frac{d C_{S}}{d t}=C_{\text {so }} V_{S} \quad \text { from part } b, \frac{d V}{d t}=v_{S} \\
& v=v_{0}+v_{s} t \\
& C_{s} v_{s}+\left(v_{0}+v_{s} t\right) \frac{d C_{s}}{d t}=c_{s o} v_{s} \\
& \frac{d C_{s}}{d t}=\frac{C_{s u} V_{s}-C_{s} v_{s}}{V_{0}+v_{s} t} \quad \begin{array}{l}
+1 \text { correct form, plugged } V \text { from } \\
\text { your part }(b) \text { answer }
\end{array} \\
& \int_{0}^{c_{s}} \frac{d c_{s}}{c_{s} v_{s}-c_{s} v_{s}}=\int_{0}^{t} \frac{d t}{v_{0}+v_{s} t} \\
& Q_{t}=0, C_{s}=0 \\
& \text { which is why } \\
& +1 \text { initial } \\
& C_{s} \text { integrated }\left[0, C_{S}\right] \begin{array}{l}
\text { condition or } \\
\text { correct bounds }
\end{array} \\
& =\frac{1}{v_{s}}\left[\ln \left(c_{s} v_{s}-c_{s} v_{s}\right)\right]_{c_{s}=0}^{c_{s}=c_{s}}=\frac{1}{v_{s}}\left[\ln \left(v_{0}+v_{s} t\right)\right]_{t=0}^{t=t} \\
& {\left[\ln \left(C_{S_{0}} v_{s}-C_{s} v_{s}\right)\right]_{C_{s}=0}^{C_{s}=C_{s}}=\left[\ln \left(v_{0}+v_{s} t\right)\right]_{t=t}^{t=0}} \\
& \ln \left(\frac{c_{s o} v_{s}-c_{s} v_{s}}{c_{s 0} v_{s}}\right)=\ln \left(\frac{v_{0}}{v_{0}+v_{s} t}\right) \\
& \frac{c_{s 0} v_{s}-c_{s} v_{s}}{c_{s o v}}=\frac{v_{0}}{v_{0}+v_{s} t} \\
& \left(c_{s o} v_{s}-c_{s} v_{s}\right)\left(v_{0}+v_{s} t\right)=v_{0} c_{s 0} v_{s} \\
& C_{s 0} v_{s} V_{0}+C_{s 0} v_{s}^{2} t-C_{s} v_{s} V_{0}-C_{s} v_{s}^{2} t=V_{0} C_{s 0} v_{s} \\
& C_{s o} v_{s}{ }^{2} t-C_{s} v_{s} v_{0}-C_{s} v_{s}{ }^{2} t=0 \\
& c_{s o} v_{s}{ }^{2} t=c_{s} v_{s}\left(t v_{s}+v_{0}\right) \\
& C_{s}=\frac{C_{s 0} v_{s}^{2} t}{\left(V_{0}+v_{s} t\right) v_{s}} \rightarrow C_{s}=\frac{C_{s 0} v_{s} t}{V_{0}+v_{s} t} \\
& +1 \text { for any attempt on integration }
\end{aligned}
$$

D. mole balance on species A
in -out + gen $=$ accum
$0-0+r_{A} V=\frac{d N_{A}}{d t}+\begin{gathered}+2 \text { mole } \\ \text { balance }\end{gathered}$
Because nothing coming out, only S enters (ho A), and A is consumed based on $-r_{A}$

$$
\frac{d N_{A}}{d t}=r_{A} V=-2 r_{B} V
$$

$$
\text { (from part } A \text { know } r_{A}=-2 r_{B} \text {) }
$$

$\frac{\partial N_{A}}{d t}=-2 K C_{A} C_{S} V \quad+1$ for adding part (a) answer, +2 for correct equation or expanded via product rule correctly to $\mathrm{dCa} / \mathrm{dt}$

Q this point you can solve via $\frac{d N A}{d t}$ or $\frac{d C_{A}}{d t}$ Both methods are valid, shown one by one below:
@ this point, can get +10 additional points using either $\mathrm{dNa} / \mathrm{dt}$ or $\mathrm{dCa} / \mathrm{dt}$ method
$\frac{+1 \text { for }}{d N a / d t} \quad \frac{d N_{A}}{d t}=\frac{-2 k \operatorname{cso} V_{s} N_{A} t}{V_{0}+V_{s} t}$
term

$$
\int_{N_{A D}}^{N_{A}} \frac{d N_{A}}{N_{A}}=-2 K C_{S O} v_{S} \int_{0}^{t} \frac{t}{V_{0}+v_{S} t} d t
$$

use integral table in the form
$\int_{0}^{x} \frac{x}{a x+b} d x$
$\ln \left(\frac{N_{A}}{N_{A O}}\right)=\left(-2 k\left(s 0 v_{s}\right)\left[\frac{t}{v_{s}}+\frac{V_{0}}{v_{s}^{2}} \ln \left(\frac{V_{0}}{V_{0}+v_{s} t}\right)\right] \quad \begin{array}{l}\int_{0} \frac{a x+b}{a: v_{s}} \\ \quad a: V_{0}\end{array}\right.$
$\ln \left(\frac{N_{A}}{N_{A D}}\right)=-2 K C_{50} t-\frac{2 K C_{5} V_{0}}{V_{S}} \ln \left(\frac{V_{0}}{V_{0}+V_{S} t}\right)$
$\left.N_{A}=N_{A O} \exp \left[-2 K \csc _{0} V_{0}\right)\right]$ integration bounds
$C_{A}=\frac{N_{A}}{V}$ and $C_{A O}=\frac{N_{A O}}{V_{0}} \rightarrow V_{0}=C_{A O} V_{0}$

$$
C_{A}=\frac{\left.C_{0} V_{0} \exp \left[-2 k c_{s 0} t-\frac{\left.2 k c_{0} V_{0} \ln \left(\frac{V_{0}}{V_{s}}\right)\right]}{V_{0}+v_{s} t}\right)\right]}{+\begin{array}{l}
+5 \text { for } \\
\text { correct } \\
\text { answer }
\end{array}}
$$

$$
\begin{aligned}
& \text { using } \frac{d N_{A}}{d t} \quad \frac{d N_{A}}{d t}=-2 K C_{A} \cdot C_{S} V \quad \text { (plugin } C_{S} \text { prom part } C \text {) }+1 \text { for Cs substitution from } \\
& \frac{d N_{A}}{d t}=-2 K C_{A} V C_{\text {noV }}^{S} t \quad\left(k n o w \quad N_{A}=C_{A} V\right) \quad+1 \text { for correct } V \\
& \text { substitution from your part } \\
& \text { (b) answer }
\end{aligned}
$$

$$
\frac{d N_{A}}{d t}=-2 k_{A} C_{S} V
$$

Know $N_{A}=V C_{A}$

$$
\begin{array}{ll}
\frac{d\left(V C_{A}\right)}{d t}=-2 K C_{A} C_{S} V & \text { plug in } C_{S} \text { from part } c \\
& \text { plug in } V \text { from part } b
\end{array}
$$

$$
V^{\frac{d C_{A}}{d t}+C_{A} \frac{d V}{d t}}=\frac{-2 K C_{A} C_{s 0} V_{s} t}{V_{0}+V_{s} t}\left(V_{0}+V_{s} t\right)
$$

+1 for Cs substitution from your part (c) answer
+1 for correct V substitution from your part

$$
\left(v_{0}+v_{s} t\right) \frac{d C_{A}}{d t}+v_{s} C_{A}=-2 K C A C_{s} v_{s} t
$$

(b) answer
+1 for $d C a / d t$ term $\quad \underline{d C_{A}}=-C_{A}\left(2 K C_{s 0} V_{S} t+V_{S}\right) \quad$ up to +2 for attempts on math with correct integration bounds

$$
\begin{aligned}
& \text { use integral table } \\
& \text { in the form } \\
& \int_{0}^{x} \frac{a x+b}{c x+d} d x
\end{aligned}
$$

$$
\ln \left(\frac{C_{A}}{C_{A 0}}\right)=\frac{-2 K C_{s} v_{s} t}{v_{s}}+\frac{-2 K c_{s} v_{s} V_{0}+v_{s}^{2}}{v_{s}^{2}} \ln \left(\frac{v_{0}}{v_{0}+v_{s} t}\right) \quad a:-2 k c_{s 0} v_{s}
$$

$$
\ln \left(\frac{C_{n}}{C_{n 0}}\right)=-2 k c_{s 0} t+\left(1-\frac{2 k c_{s} V_{0}}{v_{s}}\right) \ln \left(\frac{V_{0}}{V_{0}+v_{s} t}\right)
$$

$$
c: v_{s}
$$

$$
d: V_{0}
$$

$C_{A}=C_{A_{0}} \exp \left[-2 K C_{s o t}+\left(1-\frac{2 K C_{s c} V_{0}}{v_{s}}\right) \ln \left(\frac{V_{0}}{V_{0}+v_{s} t}\right)\right]$
+5 correct answer

