EXAMINATION 2

Chemistry 3A

Name:
Print first name before second! Use capital letters!

GSI (if you are taking Chem 3AL): \qquad
Peter Vollhardt
April 11, 2017

Please provide the following information if applicable.

Making up an I Grade
If you are, please indicate the semester during which you took previous Chem 3A and the instructor:

Instructor

Auditor \qquad

Please write the answer you wish to be graded in the boxed spaces provided.
Do scratch work on the back of the pages. This test should have 13 numbered pages. Check to make sure that you have received a complete exam. A good piece of advice: Read carefully over the questions (at least twice); make sure that you understand exactly what is being asked; avoid sloppy structures or phrases. It is better to be pedantic in accuracy now than sorry later! Good Luck!

You will not really need it, but here is a partial periodic table.

ThBIE 1-1 Partial Periodic Table

Period							Halogens	Noble gases
First	H^{1}							He^{2}
Second	$\mathrm{Li}^{2,1}$	$\mathrm{Be}^{2,2}$	$\mathrm{B}^{2.3}$	$\mathrm{C}^{2,4}$	$\mathrm{N}^{2,5}$	$\mathrm{O}^{2,6}$	$\mathbf{F}^{2,7}$	$\mathrm{Ne}^{2,8}$
Third	$\mathrm{Na}^{2,8,1}$	Mg ${ }^{2,8,2}$	$\mathrm{Al}^{2,8,3}$	$\mathrm{Si}^{2,8,4}$	P $2,8,5$	$\mathrm{S}^{2,8,6}$	$\mathrm{Cl}^{2,8,7}$	$\mathrm{Ar}^{2,8,8}$
Fourth	$\mathrm{K}^{2,8,8,1}$						$\mathrm{Br}^{2,8,18,7}$	$\mathrm{Kr}^{2,8,18,8}$
Fifth							$\mathrm{I}^{2,8,18,18,7}$	Xe ${ }^{2,8,18,18,8}$

I. [30 Points] Name or draw, as appropriate, the following molecules according to the IUPAC rules. Indicate stereochemistry where necessary (cis, trans, R, S, or dashed/wedged lines).
a.
(R)-4-Methyl-2-pentanol
b.

C.

2-Methoxy-2-propyl-1-pentanethiol
d.

(This enantiomer)
e.

(Fischer projection: this enantiomer)

II. [70 Points] Add the missing starting materials, reagents, or products (aqueous work-up is assumed where necessary). Caution: Do not forget stereochemistry!
a.

This enantiomer \square

For the following questions, circle your choice of an answer:

Is the product chiral?
Is the product optically active?
Yes No
Yes No
b.

Pure enantiomer
Yes No

There may be more than one product.

For the following questions, circle your choice of an answer:
Is/are the product(s) chiral?
Yes No

Is/are the product(s) optically active? Yes No
C.

$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSCH}_{2} \mathrm{CH}_{3}$
d. Complete one or more of the stencils provided.

There may be more than one product.
There are more stencils than you will need.

For the following questions, circle your choice of an answer:
Is/are the product(s) chiral?
Yes No
Is/are the product(s) optically active?
Yes No
e.
f.

g. Complete the stencil provided.

For the following question, circle your choice of an answer:
III. [40 Points] The following reactions proceed (predominantly) by $\mathrm{S}_{\mathrm{N}} 2, \mathrm{~S}_{\mathrm{N}} 1$, E2, or E1 pathways, respectively. Give the major products in each case and answer the questions by circling the most applicable statement.
a.

Pure enantiomer

Mechanism:
SN2
SN1
E2
E1

When using $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}$ instead of $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$, which one of the following ratios will increase:
SN2 / SN1
SN1/E1
E2 / SN2
Sn2 / E2
b.

Mechanism:
SN2
SN1
E2
E1

When using $\mathrm{H}_{2} \mathrm{SO}_{4}$ instead of HI , which one of the following ratios will increase:
SN2 / SN1
E1 / $S_{N} 1$
E2 / E1
$\mathrm{E} 2 / \mathrm{S}$ 2
c.
\square

When changing the solvent to $\mathrm{CH}_{3} \mathrm{OH}$, one of the following changes will occur:

Rate decreases $\mathrm{CH}_{3} \mathrm{OH}$ will outcompete NaBr

NaBr will outcompete NaCl

The E1 / $\mathrm{S}_{\mathrm{N}} 1$ ratio will increase
d. Consider the bromide \mathbf{A} in methanol at room temperature.

A

Circle your answer to the following statements, in the form of "yes" or "no".
Addition of NaOH will cause E 2 to take place.
Yes
No
Addition of Nal will cause E1 to take place.
Yes
Increasing the temperature will increase its rate of disappearance.
Yes
No
Adding acetone will increase the $S_{N} 1 / E 1$ ratio.
Yes
No
IV. [40] Points] Explain the following observations (on this and the next page) by a detailed mechanism (i.e., write a scheme with structures, arrow pushing, etc.)
a.

Work from left to right in the following spaces. There is much more space than you will need.
b.

$$
\mathrm{CH}_{3} \mathrm{OH} \xrightarrow{\substack{\mathrm{PBr}_{3},\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{O} \\ \text { (solvent) }}} \mathrm{CH}_{3} \mathrm{Br}+\mathrm{Br}_{2} \mathrm{POH}
$$

Work from left to right in the following spaces. There is much more space than you will need.
V. [50 Points] Provide a viable conversion of starting materials on this and the next page to the respective products. You may use any additional organic or inorganic compounds in your scheme. It will help you if you execute a retrosynthesis on the back of the preceding page (on your left).
a.

Do not worry about stereochemistry.
Work from left to right in the following spaces. There is much more space than you will need.
\qquad
b.

This enantiomer

Work from left to right in the following spaces. There is much more space than you will need. It will help you if you execute a retrosynthesis on the back of the preceding page (on your left).
VI. [20 Points]
a. In each pair of nucleophiles shown below, circle the stronger one (in $\mathrm{H}_{2} \mathrm{O}$).

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{SH}$
PH_{3}	NH_{3}
${ }^{+} \mathrm{NH}_{4}$	NH_{3}
$\mathrm{CH}_{3} \mathrm{SO}_{3}{ }^{-}$	HO^{-}
$\mathrm{CH}_{3} \mathrm{COO}^{-}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{-}$

b. Place an \boldsymbol{X} mark in the box preceding the most accurate statement. Only one answer is allowed.

The nucleophilicity of the anions $\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}$, and I^{-}in $\mathrm{CH}_{3} \mathrm{OH}$ increases along the series, because
\square the atoms get heavier
\square their electronegativity increases
\square the atoms are increasing less solvated
\square the atoms are increasing less polarizable

On NaBH_{4} reduction, a chiral racemic ketone cannot give
\square a chiral alcohol
\square an optically active alcohol
\square a meso compound
\square diastereomers

Along the series $\mathrm{CH}_{4}, \mathrm{NH}_{3}, \mathrm{OH}_{2}, \mathrm{FH}$,
\square bond strengths increase
\square acidity decreases
\square electronegativity decreases
\square basicity increases

