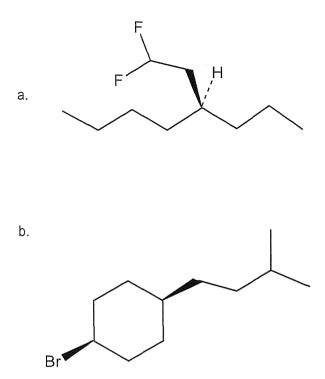
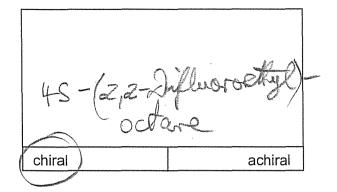
EXAMINATION 1

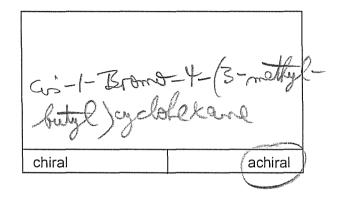
Chemistry 3A Kim Lavoie Peter Vollhardt February 27, 2003 [Print first name before second! Use capital letters!]

Please check the name of your TA and corresponding section number. Complete the remaining information if applicable.

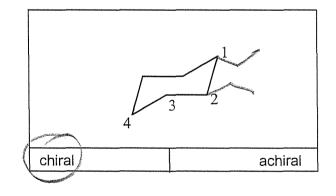
110	Olga Fedin	270	Staffan Westerberg
120	Sean Wiedemann	310	Cindy Chang
130	Kristie Koske	320	Raja Sivamani
140	Stephanie Chan	360	Ravi Chandrasekaran
160	Zack Fresco	370	Douglas Mitchell
170	Andrew Chi	410	Amish Patel
180	Hany Eitouni	420	Matt Banghart
190	Jenn Barbarow	460	Nicholas Ohler
210	Nicholas Agard	470	Greg Watkins
220	Jimmy Blair	510	Ben Huang
230	Scott Laughlin	520	Tanya Leavy
240	Carl Mieczkowski	560	Josh Goldberger
260	Jessica Defreese	570	Josh Gilmore

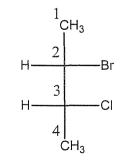

Making up an I Grade

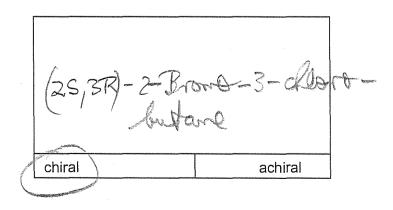

(If you are, please indicate the semester during which you took previous Chem 3A _____).


Please write the answer you wish to be graded in the spaces provided. Do scratch work on the back of the pages. This test should have 15 numbered pages. Check to make sure that you have received a complete exam. A good piece of advice: read carefully over the questions (at least twice); make sure that you understand exactly what is being asked; avoid sloppy structures or phrases. It is better to be pedantic in accuracy! <u>Good Luck</u>!

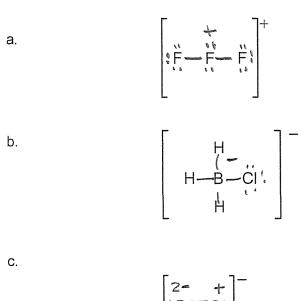
DO NOT WRITE IN THIS SPACE	······································		
	1.		(20)
	II.	************************	(20)
	111.		(40)
	IV.		(30)
	V.		(40)
	VI.		(30)
	VII.		(20)
	Total:	*******	(200)


I. [20 Points] Name or draw, as appropriate, the following molecules according to the IUPAC rules. Indicate stereochemistry where necessary (*cis, trans, R, S,* or *meso*). Indicate with a circle whether the molecule is chiral or achiral.





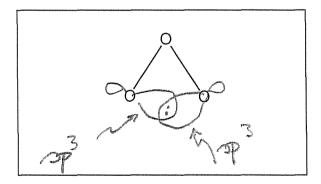
c. trans-1,2-Diethylcyclohexane

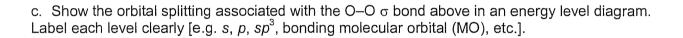


d.

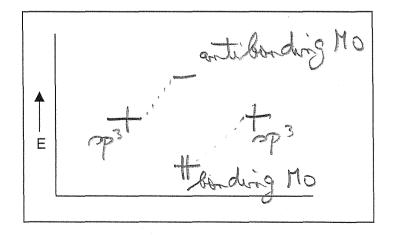
Ø00232

II. [20 Points] Write the best Lewis resonance structure for each of the following molecules. Remember to assign charges!


d.


Period							Halogens	Noble gases
First	H							He ²
Second	Li ^{2,1}	Be ^{2,2}	B ^{2,3}	C ^{2,4}	N ^{2,5}	O ^{2,6}	F ^{2,7}	Ne ^{2,8}
Third	Na ^{2,8,1}	Mg ^{2,8,2}	Al ^{2,8,3}	Si ^{2,8,4}	P 2,8,5	S ^{2,8,6}	Cl ^{2,8,7}	Ar ^{2,8,8}
Fourth	K ^{2,8,8,1}						Br ^{2,8,18,7}	Kr ^{2,8,18,8}
Fifth							I ^{2,8,18,18,7}	Xe ^{2,8,18,18,8}

- III. [40 Points] Ozone, O_3 , exists in the acyclic form, but has a cyclic isomer.
 - a. Draw both in their best Lewis octet versions.



b. Show the orbital overlap picture for one of the O–O bonds in cyclic ozone. Label clearly the overlapping orbitals (e.g. s, p, sp^3 , etc.). **Hint**: Recall cyclopropane!

1

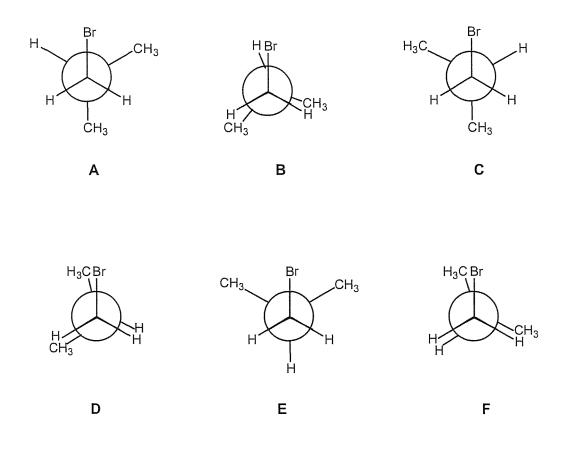
d. Place an "X" in the box for the two most plausible reasons why ozone is acyclic, but cyclopropane is not. Note: only two marks are allowed!

oxygen is more electronegative than carbon

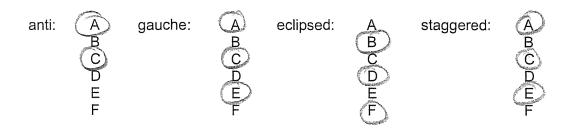
the O–O bond is much weaker than the C–C bond

acyclic O_3 is stabilized by resonance

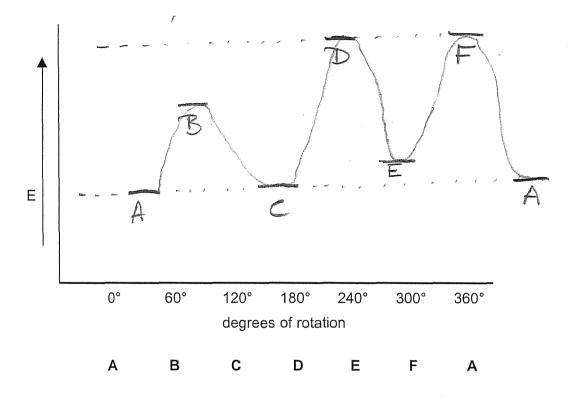
the entropy for ring opening in cyclic O_3 is much more positive than in cyclopropane

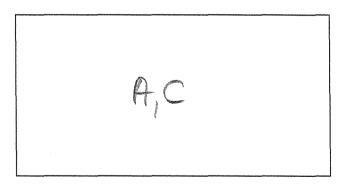


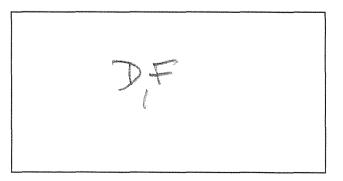
cyclic O_3 has no eclipsing hydrogens



the barrier to ring closure of ozone is too high


IV. [30 Points] Consider the rotation about the C1-C2 bond in 1-bromo-2-methylpropane, illustrated by the series of Newman projections A-F generated by the sequential clockwise motion of the back-carbon (C2) in increments of 60°.


a. Indicate by circling the appropriate letter the rotamers that contain substituents which are (with respect to each other) anti or gauche, or rotamers that are eclipsed or staggered:


b. Draw a potential energy diagram for this movement. Start by assigning a relative energy to each rotamer on the diagram before drawing the interconnecting curve.

c. Two of the staggered rotamers have the same energy. Show which ones by placing the appropriate letters in the box.

d. Two of the eclipsed rotamers have the same energy. Show which ones by placing the appropriate letters in the box.

V. [40 Points] We have learned that ethane undergoes radical bromination to bromoethane, by attack of Br on a methyl hydrogen.

$$CH_{3} - CH_{3} + Br_{2} \xrightarrow{h\nu} CH_{3} - CH_{2} - Br + HBr \qquad (1)$$

$$IO_{1} + G \qquad 70 \quad CH_{3} - CH_{2} - Br + HBr \qquad (1)$$

In principle, however, the reaction could have taken a different path, namely attack on carbon to give bromomethane.

$$CH_{3} - CH_{3} + Br_{2} \xrightarrow{h_{\nu}} 2 CH_{3} - Br \qquad (2)$$

a. Using the Tables provided on p. 9, calculate the ΔH° values for reactions (1) and (2).

.

$$\Delta H^{\circ}(1) := (101 + 46) - (70 + 17)$$

= 147 - 157 = -10 fcal mill

b. Is the reaction (2) thermodynamically feasible? Circle the right answer.

Answer: Yes No

	<i>UH</i> °in k		,	B in A-	B			(TABLE <i>DH</i> [°] Value	S to a
A in A–B	-H	-F	-Cl	-Br	-1	-OH	-NH ₂	Elemental	
Н—	104	136	103	87	71	119	108		-
CH ₃ —	105	110	85	70	57	93	84		DI
CH ₃ CH ₂ —	101	111	84	70	56	94	85	Halogen	
CH ₃ CH ₂ CH ₂ —	101	110	85	70	56	92	84		(kcal n
(CH ₃) ₂ ĆH–	98.5	111	84	71	56	96	86		
(CH ₃) ₃ C	96.5	110	85	71	55	96	85	F ₂	3
<i>Note:</i> These numbers a the values given here i	-		y because of i	improved met	hods for the	eir measuremer	it. Some of	Cl_2	5

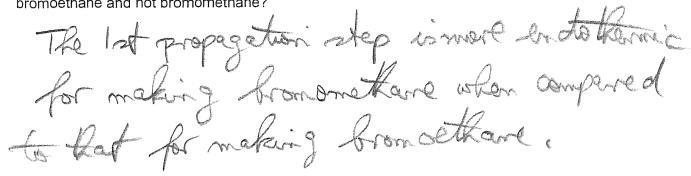
TABLE 3-2 Bond-Dissociation Energies for Some Alkanes						
<i>DH</i> ° (kcal mol ⁻¹)	Compound	<i>DH</i> ° (kcal mol ⁻¹)				
105	CH ₃ +CH ₃	90				
101	$C_2H_5 + CH_3$	89				
101	$C_2H_5 + C_2H_5$	88				
101	(CH ₃),CH+CH ₃	88				
98.5	$(CH_3)_3C+CH_3$	87				
96.5	$(CH_3)_2CH \rightarrow CH(CH_3)_2$	85.5				
	$(CH_3)_3C + C(CH_3)_3$	78.5				
	DH° (kcal mol ⁻¹) 105 101 101 101 98.5	$\begin{array}{c c} DH^{\circ} \\ (\text{kcal mol}^{-1}) & \text{Compound} \\ \hline 105 & \text{CH}_{3} + \text{CH}_{3} \\ 101 & \text{C}_{2}\text{H}_{5} + \text{CH}_{3} \\ 101 & \text{C}_{2}\text{H}_{5} + \text{C}_{2}\text{H}_{5} \\ 101 & (\text{CH}_{3})_{2}\text{CH} + \text{CH}_{3} \\ 98.5 & (\text{CH}_{3})_{3}\text{C} + \text{CH}_{3} \\ 96.5 & (\text{CH}_{3})_{2}\text{CH} + \text{CH}(\text{CH}_{3})_{2} \\ & (\text{CH}_{3})_{3}\text{C} + \text{C}(\text{CH}_{3})_{3} \end{array}$				

Elemental	Halogens
Halogen	DH° (kcal mol ⁻¹)
F ₂	38
Cl_2	58
Br ₂	46
I_2	36

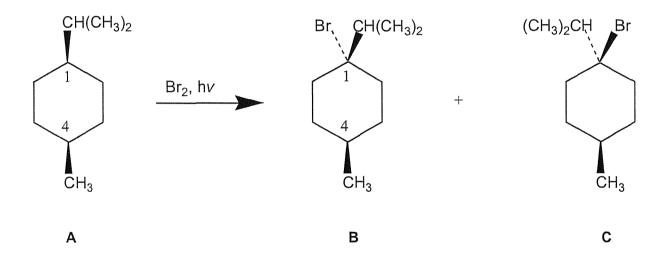
Ø09239

c. Formulate the first propagation step for reactions (1) and (2).

Reaction (1) — 1st Propagation Step :

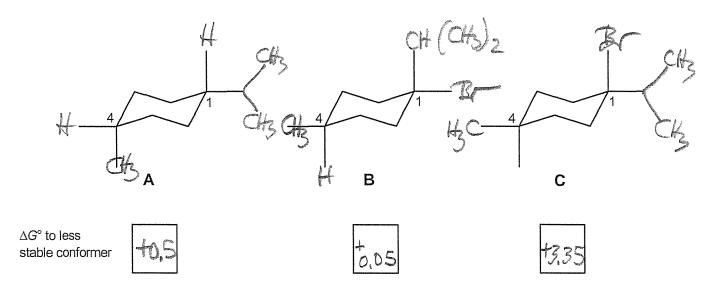

Reaction (2) — 1st Propagation Step :

d. Calculate the ΔH° values for the two reactions in c.


(1)
$$\Delta H^{\circ}$$
 (1st propagation step): $101 - 87 = -114 \text{ Real Mole-1}$

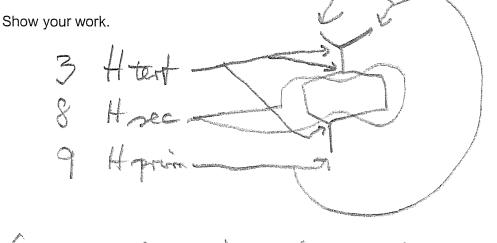
(2)
$$\Delta H^{\circ}$$
 (1st propagation step): $90 - 70 = + 20 \text{ kcal mal}$

e. Considering the results of d., can you think of a reason why ethane reacts with bromine to give bromoethane and not bromomethane?



VI. [30 Points] Compound A undergoes radical bromination to give B and C, among other products.

Change in Free Energy on Flipping from the Cyclohexane Conformer with the Indicated Substituent Equatorial to the Conformer with the Substituent Axial					
ΔG° (kcal mol ⁻¹)	Substituent	ΔG° (kcal mol ⁻¹)			
0	F	0.25			
1.70	iCl in	0.52			
1.75	Br	0.55			
2.20	I	0.46			
~ 5	но	0.94			
1.41	СН ₃ О	0.75			
1.29	H ₂ N	1.4			
	Indicated Substituent Equatorial to $\Delta G^{\circ} \text{ (kcal mol^{-1})}$ 0 1.70 1.75 2.20 ≈ 5 1.41	Indicated Substituent Equatorial to the Conformer with the Substituent ΔG° (kcal mol ⁻¹)Substituent0F1.70Cl1.75Br2.20I ≈ 5 HO1.41CH ₃ O			


a. Given the values in the Table and using the cyclohexane stencils provided, show the structures of the most stable conformers of A, B, and C. For each, calculate the free energy of "ring flip" to the less stable conformer.

b. The molecule **A** has primary, secondary, and tertiary hydrogens. Considering the relative reactivity in brominations of C–H :

primary : secondary : tertiary = 1 : 80 : 1700,

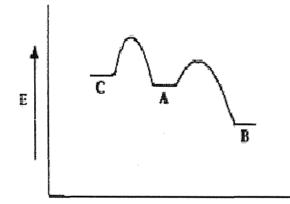
what would you expect the ratio of all primary to all secondary to all tertiary substitution products to be?

(9×1): (8×80): (3×1700) = 9:640: 5100

- VII. [20 Points] Place an X mark in the box designating the most accurate statement.
 - a. The ΔH° of an organic reaction:

reflects entropy changes

is highly negative for fast transformations



can be estimated by subtracting the sum of the DH° values of the bonds formed from those broken

is the symbol for the rate in the Arrhenius equation

b. When considering the following potential energy diagram:

\cap	
∇	
V^{\sim}	>
1	

compound A will convert to B faster than it will to C.

 ${\bf C}$ is the thermodynamically most stable component of the mixture and will form at the greatest rate from ${\bf A}$ or ${\bf B}.$

B will convert to C faster than A will.

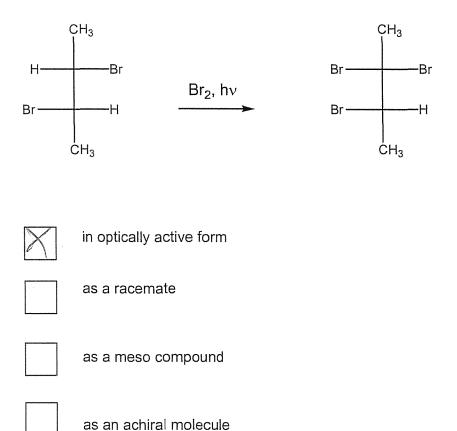
none of the above

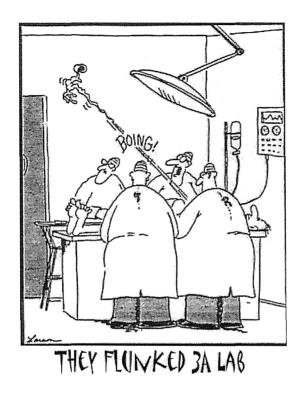
c. The compounds *cis*- and *trans*-1,3-dimethylcyclohexane are:

14

identical

stereoisomers




interconverted by ring flip

rotamers

d. The bromination of 2*S*,3*S*-dibromobutane **A** gives 2,2,3-tribromobutane **B**:

* The End *