EXAMINATION 1

Chemistry 3A
Kim Lavoie
Peter Vollhardt
February 27, 2003
Please check the name of your TA and corresponding section number. Complete the remaining information if applicable.

110	Olga Fedin	270	Staffan Westerberg
120	Sean Wiedemann	310	Cindy Chang
130	Kristie Koski	320	Raja Sivamani
140	Stephanie Chan	360	Ravi Chandrasekaran
160	Zack Fresco	370	Douglas Mitchell
170	Andrew Chi	410	Amish Patel
180	Hany Eitouni	420	Matt Banghart
190	Jenn Barbarow	460	Nicholas Ohler
210	Nicholas Agard	470	Greg Watkins
220	Jimmy Blair	510	Ben Huang
230	Scott Laughlin	520	Tanya Leavy
240	Carl Mieczkowski	560	Josh Goldberger
260	Jessica Defreese	570	Josh Gilmore

Making up an I Grade
(If you are, please indicate the semester during which you took previous Chem 3A \qquad).

Please write the answer you wish to be graded in the spaces provided. Do scratch work on the back of the pages. This test should have 15 numbered pages. Check to make sure that you have received a complete exam. A good piece of advice: read carefully over the questions (at least twice); make sure that you understand exactly what is being asked; avoid sloppy structures or phrases. It is better to be pedantic in accuracy! Good Luck!

DO NOT WRITE IN THIS SPACE

1.	(20)
II.	(20)
III.	(40)
IV.	(30)
V.	(40)
VI.	(30)
VII.	(20)
Total:	(200)

I. [20 Points] Name or draw, as appropriate, the following molecules according to the IUPAC rules. Indicate stereochemistry where necessary (cis, trans, R, S, or meso). Indicate with a circle whether the molecule is chiral or achiral.
a.

c. trans-1,2-Diethylcyclohexane

d.

II. [20 Points] Write the best Lewis resonance structure for each of the following molecules. Remember to assign charges!
a.

b.

c.

d.

TABLE 1-1 Partial Periodic Table

Period							Halogens	Noble gases
First	H^{1}							He^{2}
Second	$\mathbf{L i}^{\mathbf{2}, 1}$	$\mathrm{Be}^{2,2}$	$\mathrm{B}^{2,3}$	$\mathrm{C}^{2,4}$	$\mathrm{N}^{2,5}$	$\mathrm{O}^{2,6}$	$\mathrm{F}^{2,7}$	$\mathrm{Ne}^{2,8}$
Third	$\mathrm{Na}^{2,8,1}$	$\mathbf{M g}{ }^{\mathbf{2 , 8 , 2}}$	$\mathrm{Al}^{2,8,3}$	$\mathrm{Si}^{2,8,4}$	$\mathrm{P}^{2,8,5}$	$\mathrm{S}^{2,8,6}$	$\mathrm{Cl}^{2,8,7}$	$\mathrm{Ar}^{2,8,8}$
Fourth	$\mathrm{K}^{2,8,8,1}$						$\mathrm{Br}^{2,8,18,7}$	$\mathrm{Kr}^{2,8,18,8}$
Fifth							$\mathrm{I}^{2,8,18,18,7}$	$\mathrm{Xe}^{2,8,18,18,8}$
Note: The superscripts indicate the number of electrons in each principal shell of the atom.								

III. [40 Points] Ozone, O_{3}, exists in the acyclic form, but has a cyclic isomer.
a. Draw both in their best Lewis octet versions.

$$
0 \quad 0 \quad 0
$$

$$
0 \quad 0
$$

b. Show the orbital overlap picture for one of the O-O bonds in cyclic ozone. Label clearly the overlapping orbitals (e.g. s, p, spa3, etc.). Hint: Recall cyclopropane!

c. Show the orbital splitting associated with the $\mathrm{O}-\mathrm{O} \sigma$ bond above in an energy level diagram. Label each level clearly [e.g. $s, p, s p^{3}$, bonding molecular orbital (MO), etc.].

d. Place an " X " in the box for the two most plausible reasons why ozone is acyclic, but cyclopropane is not. Note: only two marks are allowed!
\square oxygen is more electronegative than carbon

the $\mathrm{O}-\mathrm{O}$ bond is much weaker than the $\mathrm{C}-\mathrm{C}$ bond

acyclic O_{3} is stabilized by resonance

the entropy for ring opening in cyclic O_{3} is much more positive than in cyclopropane
\square cyclic O_{3} has no eclipsing hydrogens
\square the barrier to ring closure of ozone is too high
IV. [30 Points] Consider the rotation about the C1-C2 bond in 1-bromo-2-methylpropane, illustrated by the series of Newman projections A-F generated by the sequential clockwise motion of the back-carbon (C2) in increments of 60°.

A
B

E

F
a. Indicate by circling the appropriate letter the rotamers that contain substituents which are (with respect to each other) anti or gauche, or rotamers that are eclipsed or staggered:

anti:	A	gauche:	A	eclipsed:	A	staggered:
	B		B			
	C			B		B
	D		C		C	
	E		D		D	
	F		F		E	
			F		F	

b. Draw a potential energy diagram for this movement. Start by assigning a relative energy to each rotamer on the diagram before drawing the interconnecting curve.

A B C D E F F A
c. Two of the staggered rotamers have the same energy. Show which ones by placing the appropriate letters in the box.

d. Two of the eclipsed rotamers have the same energy. Show which ones by placing the appropriate letters in the box.

V. [40 Points] We have learned that ethane undergoes radical bromination to bromoethane, by attack of Br on a methyl hydrogen.

In principle, however, the reaction could have taken a different path, namely attack on carbon to give bromomethane.

$$
\begin{equation*}
\mathrm{CH}_{3}-\mathrm{CH}_{3}+\mathrm{Br}_{2} \xrightarrow{\mathrm{~h} \nu} 2 \mathrm{CH}_{3}-\mathrm{Br} \tag{2}
\end{equation*}
$$

a. Using the Tables provided on p. 9, calculate the ΔH° values for reactions (1) and (2).
$\Delta H^{\circ}(1):$
$\Delta H^{\circ}(2):$
b. Is the reaction (2) thermodynamically feasible? Circle the right answer.
Answer: Yes No

TABLE 3-1	Bond-Dissociation Energies of Uarious A-B Bonds (HH° in $\mathrm{kcal}^{\mathrm{mol}}{ }^{-1}$)						
A in $\mathrm{A}-\mathrm{B}$	B in $\mathrm{A}-\mathrm{B}$						
	-H	-F	-CI	-Br	-I	-OH	$-\mathrm{NH}_{2}$
H-	104	136	103	87	71	119	108
CH_{3} -	105	110	85	70	57	93	84
$\mathrm{CH}_{3} \mathrm{CH}_{2}-$	101	111	84	70	56	94	85
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-$	101	110	85	70	56	92	84
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-$	98.5	111	84	71	56	96	86
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-$	96.5	110	85	71	55	96	85
Note: These numbers are being revised continually because of improved methods for their measurement. Some ofthe values given here may be in (small) error.							

TABLE 3-2	Bond-Dissociation Energies for Some Alkanes		
Compound	$\begin{gathered} D H^{\circ} \\ \left(\text { kcal } \mathrm{mol}^{-1}\right) \end{gathered}$	Compound	$\begin{gathered} D H^{\circ} \\ (\text { kcal mol } \end{gathered}$
$\mathrm{CH}_{3}+\mathrm{H}$	105	$\mathrm{CH}_{3}+\mathrm{CH}_{3}$	90
$\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{H}$	101	$\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{CH}_{3}$	89
$\mathrm{C}_{3} \mathrm{H}_{7}+\mathrm{H}$	101	$\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{5}$	88
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2}+\mathrm{H}$	101	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}+\mathrm{CH}_{3}$	88
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}+\mathrm{H}$	98.5	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}+\mathrm{CH}_{3}$	87
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}+\mathrm{H}$	96.5	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}+\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	85.5
		$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}+\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	78.5

c. Formulate the first propagation step for reactions (1) and (2).

Reaction (1) $-1^{\text {st }}$ Propagation Step :

Reaction (2) $-1^{\text {st }}$ Propagation Step :
d. Calculate the ΔH° values for the two reactions in c .
(1) ΔH° (1st propagation step) :
(2) ΔH° (1st propagation step) :
e. Considering the results of d., can you think of a reason why ethane reacts with bromine to give bromoethane and not bromomethane?
VI. [30 Points] Compound \mathbf{A} undergoes radical bromination to give \mathbf{B} and \mathbf{C}, among other products.

C

TABLE 4-3

Change in Free Energy on Flipping from the Cyclohexane Conformer with the Indicated Substituent Equatorial to the Conformer with the Substituent Axial

a. Given the values in the Table and using the cyclohexane stencils provided, show the structures of the most stable conformers of A, B, and C. For each, calculate the free energy of "ring flip" to the less stable conformer.

A
ΔG° to less stable conformer

B

C

b. The molecule A has primary, secondary, and tertiary hydrogens. Considering the relative reactivity in brominations of $\mathrm{C}-\mathrm{H}$:
primary : secondary : tertiary = $1: 80: 1700$,
what would you expect the ratio of all primary to all secondary to all tertiary substitution products to be?

Show your work.
VII. [20 Points] Place an X mark in the box designating the most accurate statement.
a. The ΔH^{ρ} of an organic reaction:
\square reflects entropy changes
\square is highly negative for fast transformations
\square can be estimated by subtracting the sum of the DH° values of the bonds formed from those brokenis the symbol for the rate in the Arrhenius equation
b. When considering the following potential energy diagram:

\square compound \mathbf{A} will convert to \mathbf{B} faster than it will to \mathbf{C}.\mathbf{C} is the thermodynamically most stable component of the mixture and will form at the greatest rate from A or B.
\square \mathbf{B} will convert to \mathbf{C} faster than \mathbf{A} will.none of the above
c. The compounds cis- and trans-1,3-dimethylcyclohexane are:

identicalstereoisomers
\square interconverted by ring flip
\square rotamers
d. The bromination of 2S,3S-dibromobutane \mathbf{A} gives 2,2,3-tribromobutane \mathbf{B} :

\square in optically active form
\square as a racemate
\square as a meso compound
\square as an achiral molecule

* The End *

