1 a when pulled slowly, the top string breaks. The string breaks when the tension exceeds a certain value
Since we are puling slowly, the mass does nat accelerate murk, sa N2L gives $T_{1}-T_{2}-m g=0$ and $T_{2}=F$, so $\quad T_{1}=T_{2}+m g>T_{2}$. As Fincreases
 Tr will exceed the theshald first.
If pulled quickly Thereis no time for the ten sion ta travel upthe string before it snaps. Or, The inertia of the mass prevents it (briofliy) from responding to the pull. Eitherway, the bottom string breaks first.

Common errors: In the slow case, yauneed to explain that $T_{1}>T_{2}$ atherwisethey would break at the some time.

16 The static coif of friction is larger then the kinotiocoeff of friction brave surfaces arents perfectly smooth. The "hillsinanematerial lockinta the "valleys" of the othermatorial. when they westatic, they full deeper in place on d are harder to separate. If they are maving, the hills and WWleys collide Gut tan't look as much.

Common errors: Newton's first law does not explain this effect. Alowtan's first law tells us if a $F=0$ then $\Delta v=0$. It is "harder" ta make on abject accelerate the an ta nat
but that difference can bevery small. If Newton's first law were the complete explanation, then in a vacuum, $\mu_{s}>\mu_{0}$ even though bath are O.
Therewere also tautological arguments: " $\mu_{5}>\mu_{N}$ since more force is needed to start an object moving than keep it moving beounse $f_{S} \leqslant \mu_{S} N$ so max $f_{S}>f_{K}=\mu_{K} N$.

1 N No. Therearemany examples:

friction in perpindicular direction
Friction apposes relative motion.
Common errors friction only opposes relative motion of two swfaces not absolute motion.
Some got the correct answer. "no" but provided an unclear or incorrect example.

Ra)

If $t=0$ is when the projectile crosses the top of the window, then we have

$$
\begin{gathered}
h=\frac{1}{2} g t_{w}^{2}+v_{0} t_{w} \\
v_{0}=\frac{h}{t_{w}}-\frac{1}{2} g t_{w}
\end{gathered}
$$

Then, because it begins at rest and travels a distance h, at which it has final velocity v_{0},

$$
\begin{aligned}
2 g x & =v_{0}^{2} \\
x & =\frac{v_{0}^{2}}{2 g}=\frac{\left(\frac{h}{t_{w}}-\frac{1}{2} g t_{w}\right)^{2}}{2 g}
\end{aligned}
$$

2b) This parabola is given by

$$
y(t)=\frac{-1}{2} g t^{2}+v_{0} t
$$

and if we let $x=0$
be the height that is crossed second after time T_{A}, then

$$
x(0)=0 \text { and } x\left(T_{A}\right)=0
$$

So

$$
0=\frac{-1}{2} g T_{A}^{2}+v_{0} T_{A} .
$$

As $T_{A} \neq 0$, we divide by T_{A} and solve:

$$
T_{A}=\frac{2 v_{0}}{g} \quad\left(T_{A}^{2}=\frac{4 v_{0}^{2}}{g^{2}}\right) \text {. }
$$

Next at two times, which we call r_{t} and $\tau_{-}, x\left(\tau_{ \pm}\right)=h$. So

$$
\begin{aligned}
x\left(\tau_{ \pm}\right) & =h=-\frac{1}{2} g \tau_{ \pm}^{2}+v_{0} \tau_{ \pm} \\
0 & =\frac{1}{2} g \tau_{ \pm}^{2}-v_{0} \tau_{ \pm}+h
\end{aligned}
$$

Solving this quadratic yields

$$
r_{ \pm}=\frac{v_{0} \pm \sqrt{v_{0}^{2}-2 g h}}{g}
$$

Now, $T_{B}=\tau_{+}-\tau_{-}$, so

$$
T_{B}=\frac{2 \sqrt{v_{0}^{2}-2 g h}}{9}
$$

We substitute $v_{0}^{2}=\frac{T_{x}^{2} g^{2}}{Y}$ to get

$$
\begin{aligned}
\frac{T_{B}^{2} g^{2}}{4} & =\frac{T_{A}^{2} g^{2}}{4}-2 g h \\
2 h & =\frac{1}{4} g\left(T_{A}^{2}-T_{B}^{2}\right) \\
g & =\frac{8 h}{T_{A}^{2}-T_{B}^{2}}
\end{aligned}
$$

(There are many other approaches!)

7A Spring Lecture 2 and 3 Question 3 Solution

Man-Yat CHU (Energy)

February 24, 2018

1 Part a

Shown in figure 1 is the free body diagram of the mass. Note that centrifugal or centripetal forces are NOT real forces, thus not included in the diagram.
It is not advised to draw the components of the forces on the diagram.
Also, the length of arrows does not need to be in scale.
One can use another coordinate system, like x y aligned with the two tension, it will give the same result.

2 Part b

To find the tension, we can set up the Newtons second law for each orthogonal direction, namely x and y.

$$
\begin{equation*}
\text { In the } \mathrm{x} \text { direction: }-T_{\text {upper }} \cos (45)-T_{\text {lower }} \cos (45)=m a_{x} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\text { In the y direction: } T_{\text {upper }} \sin (45)-T_{\text {lower }} \sin (45)-m g=m a_{y} \text {. } \tag{2}
\end{equation*}
$$

If we count the no. of variables, we got $T_{\text {upper }}, T_{\text {lower }}, a_{x}$ and a_{y}, that means we have 2 equation and 4 unknowns at this point, which means we need more constraints. But we know that the mass is in a uniform circular motion. From which we know that $a_{y}=0$ and $a_{x}=\omega^{2} R$, where ω is the angular velocity given and R is the radius of curvature for the circular motion. In the case,

$$
\begin{equation*}
R=l \cos (45) \tag{3}
\end{equation*}
$$

On plugging in, we have

$$
\text { In the x direction: } \begin{align*}
-T_{\text {upper }} \cos (45)-T_{\text {lower }} \cos (45) & =-m \omega^{2} R \tag{4}\\
-\frac{T_{\text {upper }}}{\sqrt{2}}-\frac{T_{\text {lower }}}{\sqrt{2}} & =-\frac{m \omega^{2} l}{\sqrt{2}} \tag{5}
\end{align*}
$$

$$
\begin{equation*}
\text { In the y direction: } T_{\text {upper }} \sin (45)-T_{\text {lower }} \sin (45)-m g=0 \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\frac{T_{\text {upper }}}{\sqrt{2}}-\frac{T_{\text {lower }}}{\sqrt{2}}-m g=0 . \tag{7}
\end{equation*}
$$

The rest is just solving the system of equation. To solve it, we add the x y equation to eliminate $T_{\text {upper }}$

$$
\begin{align*}
-\frac{2 T_{\text {lower }}}{\sqrt{2}}-m g & =-\frac{m \omega^{2} l}{\sqrt{2}} \tag{8}\\
T_{\text {lower }} & =\frac{m \omega^{2} l}{2}-\frac{\sqrt{2} m g}{2} \tag{9}
\end{align*}
$$

Figure 1: Freebody diagram for question 3

Then we plug in the $T_{\text {lower }}$ back to y equation to get

$$
\begin{align*}
\frac{T_{\text {upper }}}{\sqrt{2}}-\frac{T_{\text {lower }}}{\sqrt{2}}-m g & =0 \tag{10}\\
\frac{T_{\text {upper }}}{\sqrt{2}}-\frac{m \omega^{2} l}{2 \sqrt{2}}+\frac{m g}{2}-m g & =0 \tag{11}\\
T_{\text {upper }} & =\frac{\sqrt{2} m g}{2}+\frac{m \omega^{2} l}{2} . \tag{12}
\end{align*}
$$

And thus we found the two tensions.
Note that many students used $a_{r}=v^{2} / R$ or even $a_{r}=\omega^{2} / R$, we are not given v and the second equation is simply wrong. Also R is not l given.
There is no need to put unit in the final answer for symbolic questions, th units are hidden in m and g and etc.

(B)
(A) mB Max

y \oplus
(2) $T-m_{B} g=0 \Rightarrow T=m_{B g}$
(3) $N_{A} \mu_{1}-T+m_{A} g \sin (\theta)=0^{V_{A}}$
(4) $N_{A}-m_{A} g \cos (\theta)=0 \Rightarrow N_{A}=m_{A} g \cos (\theta)$

$$
\begin{aligned}
& m_{A g} \cos (\theta) \mu_{S}-m_{B} g+m_{A g} \sin \cos =0 \\
& m_{A g} \cos (\theta) \mu_{S}+m_{A g} g \sin (\theta)=m_{B} g \\
& m_{B}=m_{A}\left(\sin (\theta)+\mu_{S} \cos (\theta)\right)
\end{aligned}
$$

* Likewise for $m_{B} \min$ Case:
(2) $T=m_{B} g$
(3) $-N_{A} M_{s}-T+m_{A} g \sin (\theta)=0$
(4) $N_{A}=m_{A} g \cos (\theta)$

$$
-m_{A} g \cos (\theta) \mu_{1}-m_{B} g+m_{A} g g \sin (\theta)=0
$$

is the max mass of $B \quad$ holing $m_{B m a x}$ is when So that A does no pit
short to slide up the pere Ff pants down start to slide up the plane if pants down
\Rightarrow We know that static friction is $f_{f}=N \mu_{s}$ since we are at the $f_{f}=N{ }_{s}$
limit just before system starts to
mare mare
\Rightarrow We know these $a_{b y}=a_{A X}=a_{A y}=0$ since we went to find when system is at rest mare
the max
sore
15 pts.

Unary MB min is when \qquad Efponts up
$m_{B}=m_{A}\left(\sin (\theta)-\mu_{s} \cos (\theta)\right)$ is the min moss of min B so mat A does not slide down the incline plane

B: Given: $\mu_{x}, m_{A}, m_{B}, \theta \quad m_{B} \gg m_{A}$ (A) roves up (B) moses dun Fid: $a_{B} ; a_{A}$

$$
\begin{aligned}
& \text { (1) }\left[\begin{array}{l}
\sum F_{B X}=0, r \\
\sum F_{B y}=T-m_{B G}=m_{B} a_{B Y} \\
\text { (3) }\left[\sum F_{A}^{\prime}=F_{f}-T+m_{A} g \sin (\theta)=m_{A} a_{A X}\right. \\
\text { (4) }\left[f_{A Y}=N-m_{A g} \cos (\theta)=m_{A} a_{A Y}=0\right.
\end{array}\right.
\end{aligned}
$$

We have 3 eq. 5 unknowns
$\Rightarrow F_{f}=N \mu_{k}$ since dynamic fruition since mass A is in contact. with plane entire time
\Rightarrow Since the rope of the system bes nod change length we knew that $\left|\overrightarrow{a_{B}}\right|=\left|\overrightarrow{a_{A}}\right|$

$$
a_{B y}=a_{A x}
$$

(2) $T=m_{B}\left(g+a_{B Y}\right) \geqslant$
(3) $N \mu_{K}-T+m_{A g} \sin (\theta)=m_{A}\left(+a_{B Y}\right)$
(4)

$$
\begin{aligned}
& m_{A g} \cos (\theta) \mu_{K}-m_{B}\left(g+a_{B Y}\right)+m_{A} g \sin (\theta)=+m_{A} a_{B Y} \\
& m_{A} g \cos (\theta) \mu_{K}-m_{B} g+m_{A} g \sin (\theta)=m_{B} a_{B Y}+m_{A} a_{B Y}
\end{aligned}
$$

$$
\begin{aligned}
& \text { down words } \\
& m_{B g}>m_{A g}\left(\sin (\theta)+\mu_{x}\right. \\
& \cos 0 \\
& a_{r_{4} \operatorname{sen}}=\frac{\left|m_{A} g\left(\sin (\theta)+\mu_{k} \cos (\theta)\right)-m_{B} g\right|}{\left(m_{B}+m_{A}\right)} \\
& \text { annal answer }
\end{aligned}
$$

