Problem 1

Since the acceleration changes at $\mathrm{t}=\mathrm{t}_{1}$, we can't just go directly to our regular kinematic equations to solve for the plane's velocity and distance at $t=t_{2}$. There are several ways that we can approach this. Here a few:

1) Since the acceleration is constant for $0<t<t_{1}$ and $t_{1}<t<t_{2}$, we can use the usual kinematic equations to write down the change in velocity/position over each interval, then add them (plus any initial velocity/position). Note that in the displacement equation $\Delta x(t)=v_{0} t+a^{*} t^{2}$ the initial velocity v_{0} corresponds to the velocity at the beginning of the interval, and similarly the time t is actually the amount of time that has passed since then. So if you want to write down an expression for the plane's motion between t_{1} and t_{2}, you have to use $t \rightarrow\left(t_{2}-t_{1}\right)$ and $v_{0}=v\left(t_{1}\right)$
2) Draw a graph of the acceleration/velocity, then calculate the area under the curve between $t=0$ to $t=t 2$. If using this method, don't forget to add the initial velocity v_{0}
3) Start with the definitions for velocity and acceleration, rearrange to get $d v=a d t a n d x=v d t$, then integrate from $t=0$ to $t=t_{2}$. Since the function you are integrating changes during the integral, you will have to break it up into the integral from $t=0$ to $t=t_{1}$ plus the integral from $t=$ t_{1} to $\mathrm{t}=\mathrm{t}_{2}$

Using method 1) for parts (a) and (b):
(a) Let $v_{1}(t)$ be the velocity of the plane for $0<t<t_{1}$, and $v_{2}(t)$ the velocity of the plane for $t_{1}<t<t_{2}$. If v_{0} is the initial velocity, and a_{0} is the acceleration during that time interval, then $v_{1}(t)=v_{0}+a_{0} t$. And if $2 a_{0}$ is the acceleration during the second time interval, then $\mathrm{v}_{2}(\mathrm{t})=\mathrm{v}\left(\mathrm{t}_{1}\right)+2 \mathrm{a}_{0}\left(\mathrm{t}-\mathrm{t}_{1}\right)$. The first term is the "initial velocity" when the plane starts to accelerate at $2 a_{0}$, equal to the final velocity of the first time interval or $\mathrm{v}\left(\mathrm{t}_{1}\right)=\mathrm{v}_{0}+\mathrm{a}_{0} \mathrm{t}_{1}$

At $t=t_{2}$ the instantaneous velocity is therefore $v_{2}\left(t_{2}\right)=v_{0}+a_{0} t_{1}+2 a_{0}\left(t_{2}-t_{1}\right)$.
(b) The equations for displacement are $\Delta x_{1}(t)=v_{0} t+a_{0} / 2 * t^{2}$ and $\Delta x_{2}(t)=v\left(t_{1}\right)^{*}\left(t-t_{1}\right)+a_{0} *\left(t-t_{1}\right)^{2}$, again defined over the time intervals $0<t<t_{1}$ and $t_{1}<t<t_{2}$, respectively. These correspond to the change in position over each interval, so the total distance the plane has traveled at $t=t_{2}$ is the sum $\Delta x_{1}+\Delta x_{2}$
At $t=t_{2}$ the distance traveled is therefore $x_{2}(t)=v_{0} t_{1}+a_{0} / 2 * t_{1}{ }^{2}+\left(v_{0}+a_{0} t_{1}\right)^{*}\left(t_{2}-t_{1}\right)+a_{0} *\left(t_{2}-t_{1}\right)^{2}$.
In the next two parts, we are asked to find the velocity/acceleration of the person relative to the ground. To do this we must add the velocity/acceleration vectors for the person relative to the plane, and the plane relative to the ground. Since the person walks from the back of the plane towards the front, the motion is in the same direction and we can simply add the magnitudes.

We can calculate the velocity of the person relative to the plane by taking the derivative of the distance function we are given, then take the derivative again to get acceleration. The velocity/acceleration of the plane relative to the ground is just what we used in the first two parts.
(c) In part (a) we found the velocity of the airplane relative to the ground to be $\mathrm{v}_{\mathrm{ag}}(\mathrm{t})=\mathrm{v}_{1}(\mathrm{t})=\mathrm{v}_{0}+\mathrm{a}_{0} \mathrm{t}$. Taking the derivative of the distance $D=b^{*} t^{3}$ gives us the velocity of the person inside the airplane, which is $v_{p a}(t)=3 b^{*} t^{2}$. Their sum is the velocity of the person relative to the ground, $v_{p g}(t)$.

At $t=t_{1}$, we get that the instantaneous velocity is $v_{p g}\left(t_{1}\right)=v_{0}+a_{0} t_{1}+3 b^{*} t_{1}{ }^{2}$
(d) The instantaneous acceleration of the person relative to the plane is just the derivative of the velocity $v_{p g}(t)$. So the acceleration of the person relative to the ground is $a_{p g}(t)=6 b^{*} t+a_{0}$ The instantaneous acceleration we get from this is $a_{\mathrm{pg}}\left(\mathrm{t}_{1} / 2\right)=3 \mathrm{~b}^{*} \mathrm{t}_{1}+\mathrm{a}_{0}$

Reinsch Problem 2
$A \rightarrow$ What do we know

$$
\left.\begin{array}{l}
x_{0}=0 \\
y_{0}=h \\
v_{0}=\left(v_{x 0}, v_{y_{0}}\right) \\
a_{x}=0 \\
a_{y}=-9
\end{array}\right\}
$$

$$
\left.\begin{array}{l}
x_{0}=0 \\
y_{0}=h
\end{array}\right\} \text { For ball }
$$

So:

$$
\begin{aligned}
& x(t)=x(0)+v_{x_{0}} t+\frac{1}{2} a_{x} t^{2} \\
& \Rightarrow x(t)=v_{x_{0}} t \\
& y(t)=y(0)+v_{y_{0}} t+\frac{1}{2} a_{y} t^{2} \\
& \Rightarrow y(t)=h+v_{y_{0}} t-\frac{1}{2} g t^{2}
\end{aligned}
$$

B) \rightarrow Say the catch is made at time $t_{f}: y\left(t_{f}\right)=2 h$

$$
\begin{aligned}
& y\left(t_{f}\right)=h+v_{y_{0}} t_{f}-\frac{1}{2} g t_{f}^{2}=2 h \\
& \frac{1}{2} g t_{f}^{2}-v_{y_{0}} t_{f}+h=0 \\
& t_{f}=\frac{v_{y 0} \pm \sqrt{v_{y 0}{ }^{2}-2 g h}}{9}
\end{aligned}
$$

choose

+ solution
(we want the later,

$$
t_{f}=\frac{v_{y_{0}}+\sqrt{v_{y_{0}}^{2}-2 g h}}{9}
$$

\rightarrow For t_{f} to be real, $v_{y_{0}}^{2} \geq 2 g h$

$$
\left(U_{40} \geqslant \sqrt{2 g n}\right.
$$

C) \rightarrow What is $x\left(t_{f}\right)$? This is where the ball is caught.

$$
x\left(t_{f}\right)=\frac{v_{x 0}}{g}\left(V_{y_{0}}+\sqrt{v_{y} v_{0}-2 g h}\right)
$$

\rightarrow The ball player starts running (accelerating) at $t=0$. What is the acceleration?
\rightarrow If $x_{0, \text { runner }}=0$ and $V_{0, \text { runner }}=0$, then $x(t)_{\text {runner }}=\frac{1}{2} a_{\text {runner }} t^{2}$
\rightarrow Set the x position of the ball and the runner equal at t_{f}

$$
\begin{aligned}
v_{x_{0}} t_{t} & =\frac{1}{2} a_{R} t_{f}^{\psi} \\
a=\frac{2 v_{x 0}}{t_{f}} & =\frac{2 g v_{x_{0}}}{v_{y_{0}}+\sqrt{v_{y_{0}}{ }^{2}-2 g h}} \\
& =\frac{v_{x_{0}}}{\frac{1}{A}}\left(v_{y_{0}}-\sqrt{v_{y_{0}}^{2}-2 g h}\right)
\end{aligned}
$$

Problem 3
Box sliding down an incline, has mass m
Incline makes angle θ with the horizontal Coefficient of kinetic friction is μ_{k}
a) Assume the downhill direction is to the lower right this means we have:

Draw a free body diagram:

where $f_{k}=$ force due to kinetic friction
$F_{N}=$ normal force

$$
F_{G}=m g=\text { weight of box }
$$

b) Using a coordinate system $x y$ with the x-axis horizontal and pointing to the right, and the y-axis pointing vertically upwards Calculate the x and y components of the forces in the free body diagram in part (a) and of the acceleration vector

First, draw the forces and their components with this coordinate system

Using the diagram on the left, we can figure out the x and y components of the three forces acting on the box, which are F_{G}, F_{N}, and F_{k}

We will start with F_{G}
In vector form, we have
$\vec{F}_{G}=-F_{G} \hat{y}$, where $F_{G_{G}}=m g$

$$
\vec{F}_{G}=-m g \hat{y}
$$

Thus, the x-component of F_{G} is zero, and the y-component of F_{G} is -mg

Next, we look at F_{N}
In vector form, we have

$$
\begin{aligned}
& \vec{F}_{N}=F_{N} \sin \theta \hat{x}+F_{N} \cos \theta \hat{y} \text {, where } F_{N}^{\prime}=m g \cos \theta \\
& \vec{F}_{N}=m g \cos \theta \sin \theta \hat{x}+m g \cos ^{2} \theta \hat{y}
\end{aligned}
$$

Thus, the x-component of F_{N} is $m g \cos \theta \sin \theta$, and the y-component of F_{N} is $m g \cos ^{2} \theta$
We now look at f_{k}
In vector form, we have

$$
\begin{array}{lrl}
\vec{f}_{k}=-f_{k} \cos \theta \hat{x}+f_{k} \sin \theta \hat{y}, & \text { where } & f_{k}
\end{array}=\mu_{k} F_{N} .
$$

Thus, the x-component of f_{k} is $-\mu_{k} m g \cos ^{2} \theta$, and the y-component of $f_{k e}$ is $\mu_{k} m g \cos \theta \sin \theta$
Lastly, find the box's acceleration, \vec{a}
Use Newton's Ind Law and the vector form of the forces

$$
\begin{aligned}
\sum \vec{F}= & m \vec{a}= \\
& m \overrightarrow{F_{G}}+\vec{F}_{N}+\vec{f}_{k} \\
& m g n \hat{y}+m g \cos \theta \sin \theta \hat{x}+m g \cos ^{2} \theta \hat{y}-\mu_{k} m g \cos ^{2} \theta \hat{x}+\mu_{k} m g \cos \theta \sin \theta \hat{y} \\
& m g\left(\cos \theta \sin \theta-\mu_{k} \cos ^{2} \theta\right) \hat{x}+m g\left(\frac{\cos ^{2} \theta-1}{=-\sin ^{2} \theta}+\mu_{k} \cos \theta \sin \theta\right) \hat{y} \\
& m \vec{a}=m g \cos \theta\left(\sin \theta-\mu_{k} \cos \theta\right) \hat{x}+m g \sin \theta\left(\mu_{k} \cos \theta-\sin \theta\right) \hat{y} \\
\Rightarrow & \vec{a}=g \cos \theta\left(\sin \theta-\mu_{k} \cos \theta\right) \hat{x}+g \sin \theta\left(\mu_{k} \cos \theta-\sin \theta\right) \hat{y}
\end{aligned}
$$

Thus, the x-component of \vec{a} is $g \cos \theta\left(\sin \theta-\mu_{k} \cos \theta\right)$, and the y-component of \vec{a} is $g \sin \theta\left(\mu_{k} \cos \theta-\sin \theta\right)$
C) Different coordinate system with axes x^{\prime} and y^{\prime}. The x^{\prime} axis is parallel to the surface of the slope and pointing down the slope, and the y^{\prime} axis is perpendicular to the slope and pointing to the upper right. Calculate the x^{\prime} and y^{\prime} components of the forces in the free body diagram in part (a) and of the acceleration vector.

We first draw the forces and their components with this new coordinate system

We will use this diagram to determine the x^{\prime} and y^{\prime} components of F_{G}, F_{N}, F_{k}

Starting with F_{G}
In vector form, we have

$$
\begin{aligned}
& \vec{F}_{G}=F_{G} \sin \theta \hat{x}^{\prime}-F_{G} \cos \theta \hat{y}^{\prime}, \text { where } F_{G}=m g \\
& \vec{F}_{G}=m g \sin \theta \hat{x}^{\prime}-m g \cos \theta \hat{y}^{\prime}
\end{aligned}
$$

Thus, the x^{\prime}-component of F_{G} is mg $\sin \theta$, and the y^{\prime}-component of F_{G} is $-m g \cos \theta$
Next, look at F_{N}
In vector form, we have
$\vec{F}_{N}=F_{N} \hat{y}^{\prime}$, where $F_{N}=m g \cos \theta$

$$
\vec{F}_{N}=m g \cos \theta \hat{y}^{\prime}
$$

Thus, the x^{\prime}-component of F_{N} is zero, and the y^{\prime}-component of F_{N} is $m g \cos \theta$

Look at f_{k}
In vector form, we have:

$$
\begin{array}{ll}
\vec{f}_{k}=-f_{k} \hat{x}^{\prime}, \text { where } & f_{k}=\mu_{k} F_{N} \\
\vec{f}_{k}=-m k m g \cos \theta \hat{x}^{\prime} & f_{k}=\mu_{k} m g \cos \theta
\end{array}
$$

Thus, the x^{\prime}-component of f_{k} is $-\mu_{k} m g \cos \theta$, and the y^{\prime}-component of f_{k} is zero.
Finally, find the box's acceleration \vec{a}
Use Newton's Ind Law and the vector form of the forces

$$
\begin{aligned}
\sum \vec{F}= & m \vec{a}=\vec{F}_{G}+\vec{F}_{N}+\vec{F}_{k} \\
& m \vec{a}=m g \sin \theta \hat{x}^{\prime}-m g \cos \theta \hat{y}^{\prime}+m g \cos \theta \hat{y}^{\prime}-\mu_{k} m g \cos \theta \hat{x}^{\prime} \\
& m \vec{a}=m g\left(\sin \theta-\mu_{k} \cos \theta\right) \hat{x}^{\prime} \\
\Rightarrow & \vec{a}=g\left(\sin \theta-\mu_{k} \cos \theta\right) \hat{x}^{\prime}
\end{aligned}
$$

Thus, the x^{\prime}-component of \vec{a} is $g\left(\sin \theta-\mu_{k} \cos \theta\right)$, and the y^{\prime}-component of \vec{a} is zero

Note: The magnitudes of the accelerations found in parts (b) and (c) will be equal.

Common Errors

The majority of errors in this problem had to do with part b. For part a, nearly everyone had the correct free body diagram.
However, a large amount of people had the wrong normal force for part b. Remember, the normal force will be the same regardless of coordinate system. Many people also did not put their answers in terms of the given variables m, μ_{k}, θ, instand, for example, leaving the norma force just as $\vec{F}_{N}=F_{N} \sin \theta \hat{\imath}+F_{N} \cos \theta \hat{\jmath}$. A fair arrount of people did not finish the entire problem. Some did not include the fore components, some did not include the acceleration components, and some people left outanenture part of the problem.
other common errors include not having negative signs in their components (we did not ashe for magnitudes, so there will be negatives for some componentsl, as well as completely neglecting some forces when calculating force components.

Problem (4)

a) Free-body diagrams
$M_{i j}$

Here we assume that M_{1} is going up, therefore the friction on M_{1} points downhill. On the other hand, the friction on m_{2} vanishes because $\mu_{2}=0$. The tension is constant throughout the whole string since we assume it is massless. The coordinate systems for m_{1} and m_{2} are depicted in the diagrams.
b) Newton's $2^{\text {nd }}$ lan

$$
\begin{align*}
m_{2} ; & x ; M_{2} g \sin \theta-T \tag{1}\\
& =m_{2} \ddot{x}_{2} \quad\left(\text { Define } \ddot{x}_{2} \equiv \frac{d^{2} x_{2}}{d t^{2}}\right) . \tag{2}\\
& y ; N_{2}-M_{2} g \cos \theta
\end{align*}
$$

$$
\begin{align*}
M_{i} x_{i} \quad f-T+M_{1} g \sin \varphi & =M_{1} \ddot{x}_{1} \\
\mu_{1} N_{1}-T+M_{1} g \sin \varphi & =M_{1} \ddot{x}_{1} \quad\left(f=\mu_{1} N_{1}\right) \tag{3}\\
y_{i} \quad N_{1}-M_{1} g \cos \varphi & =0 \tag{4}
\end{align*}
$$

Notice that there are 5 variables: $\ddot{X}_{1}, \ddot{X}_{2}, T, N_{1}$, and N_{2}, but we only have 4 independent equations. The last equation can be derived from the constraint.

$$
\text { String length }=\text { constant }=x_{1}+x_{2}
$$

Take the second time derivative of both sides, we get

$$
\begin{equation*}
0=\ddot{x}_{1}+\ddot{x}_{2} \Rightarrow \ddot{x}_{1}=-\ddot{x}_{2} \tag{5}
\end{equation*}
$$

From (2) \& (4) $\quad N_{1}=M_{1} g \cos \varphi, N_{2}=M_{2} g \cos \theta$ \qquad
Substitute (5) \& (6) into (1) 8 (3)

$$
\begin{align*}
M_{1} M_{1} g \cos \varphi-T+M_{1} g \sin \varphi & =M_{1} \ddot{X}_{1} \tag{7}\\
-T+M_{2} g \sin \theta & =-M_{2} \ddot{X}_{1} \tag{8}
\end{align*}
$$

$$
\begin{aligned}
& \text { (6) } \times m_{2}+(7) \times m_{1} \quad\left(\text { Eliminate } \ddot{x}_{1}\right) \\
& -T\left(m_{1}+m_{2}\right)+m_{1} m_{2} g(\sin \varphi+\sin \theta)+m_{1} m_{2} g \cos \varphi \mu_{1}=0 \\
& \\
& \therefore T=\frac{M_{1} M_{2} g}{\left(M_{1}+m_{2}\right)}\{\sin \varphi+\sin \theta+\mu \cos \varphi\}
\end{aligned}
$$

Midterm 1-Section 1
Solution for (5)
by Sai Neh Santpur
a) Free body diagram:

$$
\begin{aligned}
& \text { 4-component: (} \vec{F}_{\text {net }) y}=0 \Rightarrow T_{1} \operatorname{Sin} 30^{\circ}-T_{2} \sin 30^{\circ}=0 \\
& \\
& \Rightarrow \quad T_{1}-\frac{T_{2}}{2}=0 \Rightarrow T_{1}=T_{2}-(1) \\
& x \text {-component: }\left(\vec{F}_{\text {net }}\right)_{x}=\frac{m v^{2}}{r} \Rightarrow T_{1} \cos 30^{\circ}+T_{2} \cos 30^{\circ}=\frac{m v^{2}}{r} \\
& \Rightarrow \quad 2 T_{1} \cos 30^{\circ}=\frac{m v^{2}}{r} \Rightarrow 2 T_{1} \cdot \frac{\sqrt{3}}{2}=\frac{m v^{2}}{r}\left(\because T_{1}=T_{2}\right) \\
& \Rightarrow \quad T_{1} \sqrt{3}=\frac{m v^{2}}{r} \Rightarrow T_{1}=\frac{m v^{2}}{\sqrt{3} r}
\end{aligned}
$$

$$
\int \frac{\int^{-362} 2}{L} \quad \gamma=\cos 30^{\circ} \mathrm{L}=\frac{\sqrt{3} \mathrm{~L}}{2}
$$

$$
\begin{aligned}
& \therefore T_{1}=T_{2}=\frac{m v^{2}}{\sqrt{3}\left(\frac{\sqrt{3 L}}{2}\right)}=\frac{2 m v^{2}}{3 L} \\
& \Rightarrow \quad T_{1}=T_{2}=\frac{2 m v^{2}}{3 L}
\end{aligned}
$$

b) Minimum value for v such that the lower string doesn't slack $\Rightarrow T_{2}>0$
(or consider the limiting case $T_{2}=0$ for the rest of the problem)

Free body diagram:

4 component: $\left(\vec{F}_{\text {net }}\right)_{y}=0 \Rightarrow T_{1} \sin 30^{\circ}-T_{2} \sin 30^{\circ}-m g=0$

$$
\begin{equation*}
\Rightarrow \frac{T_{1}}{2}-\frac{T_{2}}{2}-m g=0 \Rightarrow T_{1}-T_{2}=2 m g \tag{2}
\end{equation*}
$$

$$
\begin{align*}
x \text { component: } & \left(\vec{F}_{\text {net }}\right)_{x}=\frac{m v^{2}}{r}=\frac{m v^{2}}{\left(\frac{\sqrt{3} L}{2}\right)}=\frac{2 m v^{2}}{\sqrt{3} L} \\
\Rightarrow & T_{1} \cos 30^{\circ}+T_{2} \cos 30^{\circ}=\frac{2 m v^{2}}{\sqrt{3} L} \\
\Rightarrow & \left(T_{1}+T_{2}\right) \frac{\sqrt{3}}{2}=\frac{2 m v^{2}}{\sqrt{3} L} \Rightarrow T_{1}+T_{2}=\frac{4 m v^{2}}{3 L} \tag{3}
\end{align*}
$$

From equations (2) and (3),

$$
2 T_{2}=\frac{4 m v^{2}}{3 L}-2 m g \Rightarrow T_{2}=\frac{2 m v^{2}}{3 L}-m g
$$

Now using $T_{2}>0$, we have $\frac{2 m v^{2}}{3 L}>m g$

$$
\Rightarrow \quad v^{2}>\frac{3 g L}{2} \Rightarrow v>\sqrt{\frac{3 g L}{2}}
$$

The minimum value of v for which the string doesn't slack is $V_{\min }=\sqrt{\frac{3 g L}{2}}$
c) Free body diagram:

x component: $\left(\vec{F}_{\text {net }}\right)_{x}=0 \Rightarrow T_{1} \sin 30^{\circ}-T_{2} \sin 30^{\circ}=0$

$$
\begin{equation*}
\Rightarrow \quad T_{1}=T_{2} \tag{4}
\end{equation*}
$$

4 component: $\left(\vec{F}_{\text {net }}\right) y=\frac{-m v^{2}}{\gamma}=\frac{-m v^{2}}{\left(\frac{\sqrt{3} L}{2}\right)}=\frac{-2 m v^{2}}{\sqrt{3} L}$

$$
\begin{align*}
& \Rightarrow \quad-T_{1} \cos 30^{\circ}-m g-T_{2} \cos 30^{\circ}=-\frac{2 m v^{2}}{\sqrt{3} L} \\
& \Rightarrow \quad 2 T_{1} \cos 30^{\circ}+m g=\frac{2 m v^{2}}{\sqrt{3} L} \quad\left(\because T_{1}=T_{2}\right) \\
& \Rightarrow \quad 2 T_{1} \cdot \frac{\sqrt{3}}{2}+m g=\frac{2 m v^{2}}{\sqrt{3} L} \Rightarrow T_{1} \sqrt{3}+m g=\frac{2 m v^{2}}{\sqrt{3 L}} \\
& \Rightarrow \quad T_{1} \sqrt{3}=\frac{2 m v^{2}}{\sqrt{3} L}-m g \Rightarrow T_{1}=\frac{2 m v^{2}}{3 L}-\frac{m g}{\sqrt{3}} \tag{5}
\end{align*}
$$

Both the strings do not slack $\Rightarrow T_{1}=T_{2}>0$.
(Or you can use the limiting case of $T_{1}=T_{2}$ to find the minimum velocity)

$$
\begin{aligned}
& \text { the minimum velocity) } \\
& \begin{aligned}
T_{1}=T_{2}>0 & \Rightarrow \frac{2 m v^{2}}{3 L}-\frac{m g}{\sqrt{3}}>0 \Rightarrow \frac{2 m v^{2}}{\sqrt{3} L}>m g \Rightarrow v^{2}>\frac{\sqrt{3 g L}}{2} \\
& \Rightarrow v>\sqrt{\frac{\sqrt{3 g L}}{2}}
\end{aligned}
\end{aligned}
$$

The minimum value of $v=V_{\text {min }}=\sqrt{\frac{\sqrt{3 g L}}{2}}$
d) $V=2 \mathrm{~V}$ min ($V_{\text {min }}$ obtained in part C)

Using equations (4) and (5),

$$
\begin{aligned}
T_{1}=T_{2} & =\frac{2 m v^{2}}{3 L}-\frac{m g}{\sqrt{3}}=\frac{2 m}{3 L}\left(4 v^{2} m i n\right)-\frac{m g}{\sqrt{3}} \\
& =\frac{8 m}{3 L} \frac{\sqrt{3} g L}{2}-\frac{m g}{\sqrt{3}}=\frac{4 m g}{\sqrt{3}}-\frac{m g}{\sqrt{3}} \\
& =\frac{3 m g}{\sqrt{3}}=\sqrt{3} m g \\
& \therefore T_{1}=T_{2}=\sqrt{3} m g
\end{aligned}
$$

