Chemistry 4B, Exam II			Name		3.00	
March 5, 2018			SID			
Professor R.J. Saykally			TA			
	1	(20)				
	3.	(15)				
	4.	(20)				
	5.	(10)		_		
	6.	(10)				
	7.	(15)	·			

Rules:

1. Work all problems to 3 significant figures

TOTAL EXAM SCORE (100)

- 2. No lecture notes or books permitted
- 3. No word processing calculators (including graphing calculators) or cell phones
- 4. Time: 50 minutes
- 5. Physical Constants and Conversion Factors, Masses of Select Elementary Particles, and Standard Reduction Potentials included
- 6. Show all work for full credit and partial credit

1. (20 points) A galvanic cell is constructed that carries out the reaction

$$Pb^{2+}(aq) + 2 Cr^{2+}(aq) \rightarrow Pb(s) + 2 Cr^{3+}(aq)$$

The initial concentration of Pb²⁺ (aq) is 0.25 M, that of Cr^{2+} (aq) is 0.30 M, and that of Cr^{3+} (aq) is 0.0030 M and T = 25°C.

04-40		C G		200	
(a)	Calculate	the	standard	cell	potential.

1	(b)	Calculate the	1 - 1 - 1 - 1	11 -	1			C	T	7
ŧ	DI	Calculate II	ne iniliai	cent	voltage	ın	linits	OT	m١	V
٦	-,	Carcarate ti	ite illitial	CCII	· Oliune,	***	ullito	UI.	TIT .	٠.

(c)	What is the	he maximum	electrical	work this cell	can do	in units	of kI?

Chemistry 4B S'18, Exam II Name____

2. (10 points) Consider the fuel cell that accomplishes the overall reaction

$$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$$

 $\Delta G^{\circ} = -257.21 \text{ kJ/mol}$

If the fuel cell operates with 64% efficiency, calculate the amount of electrical work generated per gram of CO₂ produced. The gas pressures are constant at 1 atm, and the temperature is 25°C

25°C.

3. (15 points) A 0.100 M neutral aqueous CaCl₂ solution is electrolyzed using platinum electrodes at 298 K. A current of 1.50 A passes through the solution for 50.0 hours.

(a) Write the half-reactions occurring at the anode and at the cathode.

(b) What is the decomposition potential?

Name

5

Chemistry 4B S'18, Exam II

Chemi	istry 4B S'18, Exam II	Nan	ne	
(c) V	What will be the initial acti	vity of 1.0 g of	⁹⁰ Sr released into t	he environment, in Bq?
(I) II				
(d) V	What activity, in Bq, will the	he material from	part (c) show after	100 years?

5. (10 points) The specific activity of ¹⁴C in the biosphere is 0.255 Bq g⁻¹. What is the age, in years, of a piece of papyrus from an Egyptian tomb if its beta counting rate is 0.153 Bq g⁻¹? The half-life of ¹⁴C is 5730 years.

Complete and balance the following equations for nuclear reactions that (10 points) are thought to take place in stars: (b) $? + {}_{1}^{1}H \rightarrow {}_{6}^{12}C + {}_{2}^{4}He$

 $2^{12}C \rightarrow ? + ^{1}_{0}n$

Chemistry 4B S'18, Exam II Nam	e
7. (15 points) (a) Explain why elements heavier than ⁵⁶ Fe are no	ot synthesized in normal stars.
b) Write the <u>net</u> equation for the fusion reaction to	that powers our sun.
c) Write out the p-p chain mechanism for this ne	t fusion process.