1. (10+5+5+5 points) Consider the acid/bromide catalyzed disproportionation reaction: $$2 \operatorname{H}_{2} \operatorname{O}_{2}(aq) \xrightarrow[\operatorname{H}_{3}\operatorname{O}^{+}]{\operatorname{Br}^{-}} 2 \operatorname{H}_{2} \operatorname{O}(\ell) + \operatorname{O}_{2}(g) \uparrow$$ for which a postulated mechanism is: $$\begin{array}{l} H_3O^+ + H_2O_2 \xleftarrow{K_{eq}} H_3O_2^+ + H_2O \text{ (fast)} \\ H_3O_2^+ + Br^- \xrightarrow{k_1} HOBr + H_2O \text{ (slow)} \\ HOBr + H_2O_2 \xrightarrow{k_2} H_3O^+ + O_2 + Br^- \text{ (fast)} \end{array}$$ A. Write the differential rate law in terms of reactants and catalysts. B. If the overall rate increases by a factor of 4000, calculate the <u>decrease</u> (kJ/mol) in E_a effected by the catalysts. C. [True or False] If the value of k_2 is ca. 10^{11} L·mol⁻¹·s⁻¹, this solution-phase reaction rate is activation-limited. Explain. D. How is the enthalpy of this highly exothermic reaction affected by the catalysts? 2. (4+6+5 points) The temperature dependence of the iodine clock reaction was measured in a laboratory. A. From measured reaction times at three temperatures, a graph of _______vs. _______vielded a straight line with a slope of -1311 K and an intercept of 1.22. B. Calculate E_a from this information. 3 3. (10+5+10 points) The mechanism for the decomposition of NO₂Cl is: $$NO_2Cl \underset{k_{-1}}{\Longleftrightarrow} NO_2 + Cl$$ $NO_2Cl + Cl \xrightarrow{k_2} NO_2 + Cl_2$ A. By making a steady-state approximation for [Cl], express the rate of appearance of Cl_2 in terms of the concentrations of NO_2Cl and NO_2 . Graph the concentration of Cl vs. time. C. Graph $\frac{d[Cl_2]}{dt}$ vs. [NO₂Cl] as expected for high NO₂ concentrations. | Chemistry | 4B | S'05, | Exam | I | |-----------|-----------|-------|------|---| |-----------|-----------|-------|------|---| Name _____ 4. (10 points) The rate for the reaction $$OH^{-}(aq) + NH_{4}^{+}(aq) \longrightarrow H_{2}O(\ell) + NH_{3}(aq)$$ is first order in both OH⁻ and NH₄⁺ concentractions, and the rate constant k at 20°C is 3.4 x 10¹⁰ L mol⁻¹ s⁻¹. Suppose 1.00 L of a 0.0010 M NaOH solution is rapidly mixed with the same volume of 0.0010 M NH₄Cl solution. Calculate the time (in seconds) required for the OH⁻ concentration to decrease to a value of 1.0 x 10⁻⁵ M. - 5. (5+5 points) Certain bacteria use the enzyme penicilinase to decompose penicillin and render it inactive. The Michaelis-Menten constants for this enzyme and substrate are $K_{\rm m} = 5 \times 10^{-5} \, {\rm mol L^{-1}}$ and $k_2 = 2 \times 10^3 \, {\rm s^{-1}}$. - A. What is the maximum rate of decomposition of penicillin if the enzyme concentration is $6 \times 10^{-7} \text{ M}$? | Chemistry | 4B | S'05, | Exam | I | |-----------|-----------|-------|------|---| |-----------|-----------|-------|------|---| Name _____ 6 B. At what substrate concentration will the rate of decomposition be half that calculated in part A? **6.** (**15 points**) Calculate the rate constant for the abstraction reaction, carried out in the gas phase at 800K: $$\cdot$$ OH + CH₄ \longrightarrow H₂O + \cdot CH₃ The activation energy is 32 kJ/mol. The molecular diameters are 1.10 (OH) 2.90 (CH₄) and 1.70 (H₂0) Angstroms (1 Å = 10^{-10} M). The steric factor is 0.12 and the enthalpy change is -175 kJ/mol. $$\overline{C} = \sqrt{\frac{8RT}{\pi\mu}}$$