Midterm Exam

Answer all questions. Partial credit generously given; show what you know!

1. A BART train can carry 200 passengers. About 5 percent of passengers bring a bike on board. (5 pts for each part; 30 total)
a. What is the expected value of the number of bikes on a fully loaded (i.e. with 200 passengers) BART train)?
b. What is the variance of the number of bikes on a fully loaded (i.e. with 200 passengers) BART train?
c. Write an (exact) arithmetic expression for the probability that a fully loaded train has exactly 20 bikes on board. Assume the train has 200 passengers and passenger choices of whether to bring a bike on board are independent.
d. Write an approximate arithmetic expression for the probability described in c), which does not contain any factorial terms. (Do not use the normal distribution.)
e. What is the approximate PDF of the total number of bikes carried by 40 fully loaded trains?
f. What is the approximate probability that this total number carried by 40 fully loaded trains is less than 420?
2. There is a 30% chance of a major (magnitude 6.7 or more) earthquake on the Hayward fault over the next 30 years. There is a 20% chance of such an earthquake on the San Andreas fault. Assume that there is no probability of more than on earthquake on either fault.
a. Let H be the event of a major earthquake on the Hayward fault, and S be the event of a major earthquake on the San Andreas fault.
i. What is $P(H)_{?} P(S)_{\text {? (5 pts) }}$
ii. Assuming H and S are independent, what is (4 pts each):
3.

$$
\begin{aligned}
& P(H \cup S) ? \\
& P(H S) ? \\
& P(H \mid S)_{?}^{?} \\
& P(H S \mid H)_{?}
\end{aligned}
$$

iii. Assuming H and S are mutually exclusive, what is (4 pts each):
1.

$$
\begin{aligned}
& \text { 1. } \quad P(H \cup S)_{?} \\
& \text { 2. } \quad P(H S) ? \\
& \text { 3. } \quad P(H \mid S)_{?} \\
& \text { 4. } \quad P(H S \mid H)_{?}
\end{aligned}
$$

b. A house is situated in a location such that if there is a major earthquake on the Hayward fault, the probability that it is seriously damaged is .5 , while if there is a major earthquake on the San Andreas fault, the probability that it is seriously damaged in .2. Assuming that H and S are mutually exclusive (5 pts each):
i. What is the probability that the house is damaged as a result of a major earthquake on one of these two faults over the next 30 years.
ii. If the house is damaged in a major earthquake, what is the probability that the quake as on the Hayward fault?
3. A sadistic professor institutes the policy of random quizzes at the beginning of each class. In every class, he throws a die and if the result is a 1 there is a quiz, and the result if other than a 1 there is no quiz. He has two different dice, one with the numbers 1-6, and another with the numbers 1-3, each on two different faces. He uses the same die in every throw.
a. Let X be the first class when there is a quiz. In other words if the first class of the semester has a quiz then $X=1$, if the first class has no quiz but the second class has a quiz, then $X=2$, etc. Assume the professor uses the die with the numbers 1-6, what is the PMF of X ? (7 pts)
b. Suppose the first quiz is in the fifth class (4 pts each).
i. What is the value of the likelihood function if he is using the die with the numbers 1-3?
ii. What is the value of the likelihood function if he is using the die with the numbers 1-6?
iii. Based on the results above, which is the better estimate of the quiz probability, $1 / 3$ or $1 / 6$?
iv. What is the MLE for the quiz probability, assuming the probability could have any value-not just $1 / 3$ or $1 / 6$?

