UNIVERSITY OF CALIFORNIA, BERKELEY

 MECHANICAL ENGINEERINGME106 Fluid Mechanics
NAME \qquad
1st Test, S18 Prof S. Morris

1. (100) The expression $\mathbf{V}=k x y \mathbf{i}-\frac{1}{2} k y^{2} \mathbf{j}$ (constant $k>0$) represents the velocity field near a stagnation point; the no-slip condition $v_{x}=0$ is satisfied on the rigid surface $y=0$.

(a) Find the equation of the streamline passing through the point $(1,1)$ (35 points).
(b) Find the fluid acceleration a (35 points).
(c) Verify that your answer in part (b) is dimensionally correct (10 points).
(d) On the figure above, sketch a fluid particle, its position vector \mathbf{r} and its acceleration \mathbf{a}. Then explain physically the direction of the vector a (10 points).
(e) Explain physically why the fluid acceleration is non-zero, even though the expression for \mathbf{V} is independent of time (10 points).

Solution
(a) 35 Substitute $v_{x}=k x y, v_{y}=-\frac{1}{2} k y^{2}$ into $\frac{\mathrm{d} x}{v_{x}}=\frac{\mathrm{d} y}{v_{y}}$ (15 points - correct statement of ODE):

$$
\begin{equation*}
\frac{\mathrm{d} x}{x y}=-\frac{\mathrm{d} y}{\frac{1}{2} y^{2}} \tag{1.1}
\end{equation*}
$$

(k cancels).
Rearrange :

$$
\begin{equation*}
\frac{1}{2} y^{2} \mathrm{~d} x+x y \mathrm{~d} y=0 \Rightarrow \mathrm{~d}\left\{x y^{2}\right\}=0 \tag{1.2a,b}
\end{equation*}
$$

Eq.(1.2b) follows from (1.2a) by the product rule. One could also cancel the common factor of y from (1.2a); the resulting equation is separated, and can be integrated.

Streamlines: $x y^{2}=$ const. (15 points - answer attained with correct method)
Streamline through $\{1,1\}$: substitute $x=1, y=1$ into $x y^{2}=$ const. to show that const. $=1$, and that $x y^{2}=1$ (5 points - evaluated at $(1,1)$ for constant).
(b) 35 Method 1:

$$
\begin{equation*}
\mathbf{a}=\frac{\partial \mathbf{V}}{\partial t}+v_{x} \frac{\partial \mathbf{V}}{\partial x}+v_{y} \frac{\partial \mathbf{V}}{\partial y} \tag{1.3}
\end{equation*}
$$

Here $\mathbf{V}=k x y \mathbf{i}-\frac{1}{2} k y^{2} \mathbf{j}$:

$$
\begin{equation*}
\frac{\partial \mathbf{V}}{\partial t}=0, \quad \frac{\partial \mathbf{V}}{\partial x}=k y \mathbf{i}, \quad \frac{\partial \mathbf{V}}{\partial y}=k x \mathbf{i}-k y \mathbf{j} \tag{1.4a,b,c}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\mathbf{a}=k x y\{k y \mathbf{i}\}-\frac{1}{2} k y^{2}\{k x \mathbf{i}-k y \mathbf{j}\},=\frac{1}{2} k^{2} y^{2}\{x \mathbf{i}+y \mathbf{j}\},=\frac{1}{2} k^{2} y^{2} \mathbf{r} \tag{1.5a,b,c}
\end{equation*}
$$

Method 2: because the unit vectors \mathbf{i}, \mathbf{j} for Cartesian coordinates are constant in direction (as well, of course, in magnitude):

$$
\begin{equation*}
\frac{\mathrm{d} \mathbf{V}}{\mathrm{~d} t}=\mathbf{i} \frac{\mathrm{d} v_{x}}{\mathrm{~d} t}+\mathbf{j} \frac{\mathrm{d} v_{y}}{\mathrm{~d} t} \tag{1.6}
\end{equation*}
$$

Because $v_{x}=k x y$,

$$
\begin{equation*}
\frac{\mathrm{d} v_{x}}{\mathrm{~d} t}=k y \frac{\mathrm{~d} x}{\mathrm{~d} t}+k x \frac{\mathrm{~d} y}{\mathrm{~d} t},=k y v_{x}+k x v_{y},=\frac{1}{2} k x y^{2} . \tag{1.7a,b,c}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\frac{\mathrm{d} v_{y}}{\mathrm{~d} t}=-\frac{1}{2} k y^{3} . \tag{1.8}
\end{equation*}
$$

By substituting (1.8) and (1.7c) into (1.60, we again obtain (1.5c).
15 points - equation showing acceleration as material derivative of velocity
20 points - evaluation of a
(-5 points for minor algebraic error)
(c) 10 For the formula for \mathbf{V} to be dimensionally consistent, $[k]=L^{-1} T^{-1}$.

Dimensions of the right side of (1.5c):

$$
\left[k^{2} y^{2} \mathbf{r}\right]=L^{-2} T^{-2} L^{2} L,=L T^{-2}
$$

eq.(1.5c) is therefore dimensionally consistent.
(d) $\mathbf{1 0}$ Sketch : this must show that the vector \mathbf{a} is parallel to \mathbf{r} (5 points).

Physical interpretation: acceleration has a component directed towards the centre of curvature of the particle path. Because this flow is steady, particles move along streamlines: acceleration therefore has a component directed towards the centre of curvature of the streamline (5 points).
(e) $\mathbf{1 0}$ The particle velocity changes because it moves through a spatially varying velocity field. ($\frac{\partial \mathbf{V}}{\partial t}=0$ but $v_{x} \frac{\partial \mathbf{V}}{\partial x}+v_{y} \frac{\partial \mathbf{V}}{\partial y} \neq 0$.)
2. (100) The velocity field in high-Reynolds number flow past a spherical gas bubble of radius a is given to a good approximation by

$$
\begin{equation*}
v_{r}=-U\left\{1-\frac{a^{3}}{r^{3}}\right\} \cos \theta, \quad v_{\theta}=U\left\{1+\frac{1}{2} \frac{a^{3}}{r^{3}}\right\} \sin \theta \tag{2.1a,b}
\end{equation*}
$$

The flow is axisymmetric about the line $\theta=0$. The flow is steady, adiabatic and effectively incompressible and inviscid.

(a) Using the Bernoulli equation, find the pressure p at point θ on the sphere $(r=a)$ in terms of the fluid density ρ, pressure p_{0} at the stagnation point O, and the velocity U of the free stream (that is, the fluid at infinity). Given: you may set $\mathbf{g}=0$ (35 points).
(b) Sketch the relation between $\left(p-p_{0}\right) /\left(\frac{1}{2} \rho U^{2}\right)$ and θ calculated in part (a), and explain its form physically (35 points).
(c) Hence find the component of force F exerted by the fluid on the spherical bubble in the direction of the free stream. Using your sketch in part (b), explain your result physically (30 points).

Solution

(a) 35 Apply the Bernoulli equation along the stagnation streamline from O to θ (20 points):

$$
\begin{equation*}
p+\frac{1}{2} \rho v_{\theta}^{2}=p_{0} \tag{2.2}
\end{equation*}
$$

(On $r=a, V^{2}=v_{r}^{2}+v_{\theta}^{2},=v_{\theta}^{2}$ because $v_{r}=0$.)
Use (2.1b) to evaluate $v_{\theta}=\frac{3}{2} U \sin \theta$. Then substitute in (2.2) and rearrange (15 points):

$$
\begin{equation*}
\frac{p-p_{0}}{\frac{1}{2} \rho U^{2}}=-\frac{9}{4} \sin ^{2} \theta \tag{2.3}
\end{equation*}
$$

(b) 35 Because the speed V is an even function of $\theta-\pi / 2$, so too is $p-p_{0}$ (15 points for explanation):

Sketch was negative, $\frac{p-p_{0}}{\frac{1}{2} \rho U^{2}}$ between 0 and $9 / 4, \theta$ symmetric about $\pi / 2$, zero slope at zeros (20 points).
(c) 30 The force per unit area exerted in the direction of the free stream is $-p \cos \theta$. Because this quantity is independent of azimuthal angle, the resultant force on an strip subtending angle $\mathrm{d} \theta$ at the
centre of the sphere is $-p \cos \theta \mathrm{~d} A$ (20 points), where $\mathrm{d} A=(a \mathrm{~d} \theta)(2 \pi a \sin \theta)$ (5 points). The resultant force on the entire sphere

$$
\begin{equation*}
F=-\int p \cos \theta \mathrm{~d} A,=-2 \pi a^{2} \int_{0}^{\pi} p \sin \theta \cos \theta \mathrm{~d} \theta . \tag{2.4a,b}
\end{equation*}
$$

Because a constant pressure p_{0} exerts zero resultant force on a closed surface, (2.4b) can be expressed as

$$
\begin{equation*}
F=-2 \pi a^{2} \int_{0}^{\pi}\left(p-p_{0}\right) \sin \theta \cos \theta \mathrm{d} \theta \tag{2.5}
\end{equation*}
$$

(Mathematically, $\int_{0}^{\pi} \sin \theta \cos \theta \mathrm{d} \theta=0$ because, with respect to $\theta-\pi / 2, \sin \theta$ is an even function, but $\cos \theta$ is an odd function.)
Because, with respect to $\theta-\pi / 2,\left(p-p_{0}\right) \sin \theta$ is an even function, but $\cos \theta$ is an odd function, the integral vanishes: $\mathrm{F}=0$. This result can also be deduced by expressing (2.4a) in the form

$$
F=-\int\left(p-p_{0}\right) \cos \theta \mathrm{d} A
$$

and noting that $\mathrm{d} A>0$, but $\left(p-p_{0}\right) \cos \theta$ is an odd function of $\theta-\pi / 2$ (5 points for explanation). (-5 points if body was assumed a cylinder instead of a sphere)

