Solutions to the Midterm Exam - Linear Algebra

Math 110, Spring 2018. Instructor: E. Frenkel

Problem 1. Let V be the subspace of \mathbb{R}^{3} defined by the equation

$$
a_{1}+2 a_{2}+3 a_{3}=0
$$

Find a basis of V and give a proof that it is indeed a basis.
Solution. We claim that

$$
\beta=\left\{\left(\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{c}
3 \\
0 \\
-1
\end{array}\right)\right\}
$$

is a basis (note: of course, it's just one of many possibilities). Observe that $\operatorname{dim}(V)=2$. Indeed, $V=N(T)$, where $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is the linear transformation sending $\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)$ to $a_{1}+2 a_{2}+3 a_{3}$. Since T sends $\left(\begin{array}{l}a \\ 0 \\ 0\end{array}\right)$ to a, we obtain that $R(T)=\mathbb{R}$. Therefore, by
Dimension Theorem, $\operatorname{dim}(V)=\operatorname{dim}\left(\mathbb{R}^{3}\right)-\operatorname{dim}(\mathbb{R})=2$. Since β consists of two elements, in order to prove that β is a basis of V, it is sufficient to prove that β is linearly independent. Two vectors are linearly independent if and only if they are not proportional to each other. Clearly, any scalar multiple of $\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)$ has 0 as the third entry, whereas any scalar multiple of $\left(\begin{array}{c}3 \\ 0 \\ -1\end{array}\right)$ has 0 as the second entry. Hence the two vectors in β are not proportional to each other.

Problem 2. Let T be the linear transformation $P_{3}(\mathbb{C}) \rightarrow P_{3}(\mathbb{C})$ given by the formula $T(p(t))=p(t+1)$. Compute the matrix $[T]_{\beta}$, where β is the basis of monomials in t.

Solution. By definition, the i th column of $[T]_{\beta}$ is the coordinate vector of $T\left(t^{i}\right)=(t+1)^{i}$ with respect to β. Hence

$$
[T]_{\beta}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Problem 3. Prove that a vector space V over a field F is isomorphic to F^{n} (where n is a positive integer) if and only if $\operatorname{dim} V=n$.

Solution. Since this is an "if and only if" statement, we need to prove it in both directions. Let us first prove that if $\operatorname{dim}(V)=n$, then V is isomorhic to F^{n}. Choose a basis $\beta=$ $\left\{x_{1}, \ldots, x_{n}\right\}$ of V. Then, since β spans V, every vector in V can be written in the form

$$
v=\sum_{i=1}^{n} a_{i} x_{i}, \quad a_{i} \in F
$$

Moreover, since β is linearly independent, the scalars a_{i} are uniquely defined for each v. Define a map $\phi_{\beta}: V \rightarrow F^{n}$ by the formula

$$
\phi_{\beta}(v)=\left(\begin{array}{c}
a_{1} \\
\ldots \\
a_{n}
\end{array}\right)
$$

In other words, $\phi_{\beta}(v)=[v]_{\beta}$. It is a linear transformation because $[v+w]_{\beta}=[v]_{\beta}+[w]_{\beta}$ and $[c v]=c[v]_{\beta}$ for any $c \in F$. Let us show that ϕ_{β} is invertible. Define the linear transformation $\psi_{\beta}: F^{n} \rightarrow V$ by the formula

$$
\psi_{\beta}\left(\left(\begin{array}{c}
a_{1} \\
\ldots \\
a_{n}
\end{array}\right)\right)=\sum_{i=1}^{n} a_{i} x_{i}
$$

Then it follows from the definitions of ϕ_{β} and ψ_{β} that $\phi_{\beta} \circ \psi_{\beta}=\mathrm{I}_{F^{n}}$ and $\psi_{\beta} \circ \phi_{\beta}=\mathrm{I}_{V}$. Hence ϕ_{β} is an isomorphism.

Conversely, suppose that V and F^{n} are isomorphic. Then there is an isomorphism $\psi: F^{n} \rightarrow V$. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the canonical basis of F^{n} and set $x_{i}=\psi\left(e_{i}\right)$. Then

$$
\psi\left(\left(\begin{array}{c}
a_{1} \\
\ldots \\
a_{n}
\end{array}\right)\right)=\sum_{i=1}^{n} a_{i} x_{i}
$$

Since ψ is onto, the set $\beta=\left\{x_{1}, \ldots, x_{n}\right\}$ generates V. Let us show that β is a linearly independent subset of V. Suppose that

$$
\sum_{i=1}^{n} a_{i} x_{i}=\mathbf{0}
$$

Since the left hand side is equal to $\psi\left(\left(\begin{array}{c}a_{1} \\ \ldots \\ a_{n}\end{array}\right)\right.$, it follows that $\left(\begin{array}{c}a_{1} \\ \ldots \\ a_{n}\end{array}\right) \in N(\psi)$. Since ψ is one-to-one, it follows that $a_{i}=0$ for all i, and so β is indeed a linearly independent subset of V. Therefore β is a basis of V, and $\operatorname{dim}(V)=n$.

Problem 4. Let V be a two-dimensional vector space over \mathbb{R} and $T: V \rightarrow V$ a linear transformation. Suppose that $\beta=\left\{x_{1}, x_{2}\right\}$ and $\beta^{\prime}=\left\{y_{1}, y_{2}\right\}$ are two bases in V such that

$$
x_{1}=y_{1}-y_{2}, \quad x_{2}=2 y_{1}-y_{2}
$$

Find $[T]_{\beta}$ if

$$
[T]_{\beta^{\prime}}=\left(\begin{array}{cc}
3 & -2 \\
-1 & 2
\end{array}\right)
$$

Solution. According to the formula proved in the book,

$$
[T]_{\beta}=C^{-1}[T]_{\beta^{\prime}} C,
$$

where

$$
C=\left(\left[x_{1}\right]_{\beta^{\prime}}\left[x_{2}\right]_{\beta^{\prime}}\right)=\left(\begin{array}{cc}
1 & 2 \\
-1 & -1
\end{array}\right)
$$

(note: the roles played here by β and β^{\prime} are opposite to those in the book). Therefore we find

$$
[T]_{\beta}=\left(\begin{array}{cc}
-1 & -2 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
3 & -2 \\
-1 & 2
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
-1 & -1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
2 & 4
\end{array}\right)
$$

Problem 5. Let V be an n-dimensional vector space over a field F and T a linear transformation $V \rightarrow V$. Suppose that W is a k-dimensional subspace of V, which is T-invariant (that is, $\forall \mathbf{v} \in W$, we have $T(\mathbf{v}) \in W$). Prove that there is a basis β of V such that each of the first k columns of the matrix $[T]_{\beta}$ has the following property: its last $(n-k)$ entries are all equal to 0 .

Solution. Choose a basis $\left\{x_{1}, \ldots, x_{k}\right\}$ of W. By Replacement Theorem, we can extend it to a basis $\beta=\left\{x_{1}, \ldots, x_{n}\right\}$ of V. In $[T]_{\beta}$, the i th row is $\left[T\left(x_{i}\right)\right]_{\beta}$. If $i=1, \ldots, k$, then $T\left(x_{i}\right) \in W$ because W is T-invariant. But then $T\left(x_{i}\right), i=1, \ldots, k$, is a linear combination of x_{1}, \ldots, x_{k} only, which is equivalent to saying that in $\left[T\left(x_{i}\right)\right]_{\beta}$, where $i=1, \ldots, k$, the last $(n-k)$ entries are all equal to 0 . But these $\left[T\left(x_{i}\right)\right]_{\beta}, i=1, \ldots, k$, are exactly the first k columns of the matrix $[T]_{\beta}$, so the desired statement is proved.

Problem 6. Define linear functionals $f_{1}: P_{1}(\mathbb{R}) \rightarrow \mathbb{R}$ and $f_{2}: P_{1}(\mathbb{R}) \rightarrow \mathbb{R}$ by the formulas

$$
f_{1}(p(t))=p(3), \quad f_{2}(p(t))=p(-1)
$$

for all $p(t) \in P_{1}(\mathbb{R})$.
Find the basis of $P_{1}(\mathbb{R})$ for which $\left\{f_{1}, f_{2}\right\}$ is the dual basis.
Solution. By definition, the sought-after basis consists of the polynomials $p_{1}(t)$ and $p_{2}(t)$ such that $f_{i}\left(p_{j}(t)\right)=\delta_{i, j}$.

Writing $p_{1}(t)=a_{1}+b_{1} t$, we obtain

$$
\begin{gathered}
a_{1}+3 b_{1}=1 \\
a_{1}-b_{2}=0
\end{gathered}
$$

Solving this system, we get $a_{1}=1 / 4, b_{1}=1 / 4$.
Writing $p_{2}(t)=a_{2}+b_{2} t$, we obtain

$$
a_{2}+3 b_{2}=0
$$

$$
a_{2}-b_{2}=1
$$

Solving this system, we get $a_{2}=3 / 4, b_{2}=-1 / 4$.
Hence the sought-after basis is $\{1 / 4+1 / 4 t, 3 / 4-1 / 4 t\}$.
Problem 7. Let V be an n-dimensional vector space over a field F and V^{*} the dual space. Given a subspace W of V, let W^{0} be the subspace of V^{*} which consists of all

$$
f: V \rightarrow F \quad \text { such that } \quad f(\mathbf{v})=0, \quad \forall \mathbf{v} \in W
$$

Prove that $\operatorname{dim} W^{0}=n-\operatorname{dim} W$.
Solution. Choose a basis $\left\{x_{1}, \ldots, x_{k}\right\}$ of W. By Replacement Theorem, we can extend it to a basis $\left\{x_{1}, \ldots, x_{n}\right\}$ of V. By definition, $f \in W^{0}$ if and only if

$$
f\left(\sum_{i=1}^{k} a_{i} x_{i}\right)=\mathbf{0}, \quad \forall a_{i} \in F, \quad i=1, \ldots, k
$$

Since f is linear, this property is equivalent to

$$
f\left(x_{i}\right)=\mathbf{0}, \quad i=1, \ldots, k
$$

Let $\left\{f_{1}, \ldots, f_{n}\right\}$ be the basis of V^{*} which is dual to $\left\{x_{1}, \ldots, x_{k}\right\}$. Then any $f \in V^{*}$ can be written as

$$
f=\sum_{i=1}^{n} b_{i} f_{i}, \quad b_{i} \in F
$$

Since $f_{i}\left(x_{j}\right)=\delta_{i, j}$, we find that

$$
f\left(x_{i}\right)=b_{i} .
$$

Therefore $f \in W^{0}$ if and only if $b_{i}=0$ for all $i=1, \ldots, k$. This means that for any $f \in W^{0}$, we have

$$
f=\sum_{i=k+1}^{n} b_{i} f_{i}, \quad b_{i} \in F
$$

Hence $\left\{f_{k+1}, \ldots, f_{n}\right\}$ is a basis of W^{0}, and so $\operatorname{dim}\left(W^{0}\right)=n-k=\operatorname{dim}(V)-\operatorname{dim}(W)$.

