# University of California, Berkeley, Department of Physics 

Physics 7B,

## Midterm 2, Spring 2017

- Calculators or other electronic devices are not permitted.
- Put a box around your final answer and cross out any work you wish the grader to disregard.
- Try to be neat and organized.

Problems are weighted as indicated. Remember to look over your work. Good Luck!

| Problem 1 | /18 |
| :---: | :---: |
| Problem 2 | /18 |
| Problem 3 | /24 |
| Problem 4 | /22 |
| Problem 5 | /18 |
| Total | /100 |

## Problem 1. [18 points] Short questions

a) [8 points] Find the electric potential at point P , a distance z along the perpindicular bisector of a loop of charge Q and radius R .

b) [8 points] A radially directed electric field is given by $\vec{E}=E_{0} \frac{\exp (-\kappa r)}{r^{2}} \hat{r}$ where $E_{0}$ and $\kappa$ are constants. Find the charge within the radius $1 / \kappa$.
c) [2 points] Challenge. Find the charge density that creates the field in (b) as a function of radius.

## Problem 2. [18 points] Capacitor with dielectric

A square capacitor of side $L\left(A=L^{2}\right)$ and plate separation $d$ is partially filled with a dielectric with dielectric constant $K$, which is inserted a distance $x<L$ into the capacitor

Express your answer to the questions below in terms of the given parameters.
(a) [4 points] What is the capacitance of the capacitor?
(b) [4 points] The capacitor is charged to a voltage V . What is the stored energy in the capacitor?
(c) [5 points] Suppose the voltage source is disconnected. How do the charge, voltage and stored energy change if the dielectric is removed?
(d) [5 points] Suppose instead the voltage source remains connected while the dielectric is removed. How do the charge, voltage and stored energy change if the dielectric is removed?


Problem 3. [24 points] Two finite size long rods
Estimate the capacitance per unit length of two very long straight parallel conducting wires, each of nonzero radius $R$, carrying uniform charges $+Q$ and $-Q$, and separated by a distance $d$ which is large compared to $R(d \gg R)$. The separation is so large that the charge distribution on each wire can be approximated as a uniform surface charge density.
(a) [8 points] Find the electric field at a point x along the line joining the wires.
(b) $[\mathbf{8}$ points $]$ Find the potential at the point x .
(c) [8 points] Using (b) or any other method find the capacitance per unit length of the two wires.


## Problem 4. [22 points]

A cylindrical wire resistor with resistivity $\rho$ has a radius that doubles between $\mathrm{Z}=0$ and $\mathrm{Z}=\mathrm{L}$, as in the figure. The radius of the cone is given by $R=R 0(1+z / L)$. Find
(a) [12 points] The total resistance between $\mathrm{z}=0$ and $\mathrm{z}=\mathrm{L}$

In what follows assume a current I flows in the resistor.
(b) [4 points] Find the power dissipation through the resistor.
(c) [3 points] Find the power dissipation per unit length in the resistor. Does it depend on $z$ ?
(d) [3 points] Challenge: Find the power loss per unit volume in the resistor. Express your answer in terms of the current density J


Problem 5. [18 points] Twelve equal charges $\mathrm{Q}>0$ are arrayed at equal intervals (hour marks) on a circle of radius R as shown in the diagram. A charge $\mathrm{q}>0$ is placed in the center.

(a) [5 points] What is the force on the charge $q$ ?
(b) [5 points] How much work had to be done to bring this charge in from infinity?
(c) [8 points] The charge Q located 7 o'clock is removed. What is the force on the charge q now (magnitude and direction)?


$$
\begin{align*}
& \vec{F}=\frac{Q_{1} Q_{2}}{4 \pi \epsilon_{0} r^{2}} \hat{r}=\frac{k Q_{1} Q_{2}}{r^{2}} \hat{r} \\
& \vec{F}=Q \vec{E} \\
& \vec{E}=\int \frac{d Q}{4 \pi \epsilon_{0} r^{2}} \hat{r}=\int \frac{k d Q}{r^{2}} \hat{r} \\
& \rho=\frac{\Delta Q}{\Delta V} \\
& \sigma=\frac{\Delta Q}{\Delta A} \\
& \lambda=\frac{\Delta Q}{\Delta l} \\
& \vec{p}=Q \vec{d} \\
& \vec{\tau}=\vec{p} \times \vec{E} \\
& U=-\vec{p} \cdot \vec{E} \\
& \Phi_{E}=\int \vec{E} \cdot d \vec{A} \\
& \oint \vec{E} \cdot d \vec{A}=\frac{Q_{\text {encl }}}{\epsilon_{0}} \\
& \Delta U=Q \Delta V \\
& V(b)-V(a)=-\int_{a}^{b} \vec{E} \cdot d \vec{l} \\
& V=\int \frac{d Q}{4 \pi \epsilon_{0} r}=\int \frac{k d Q}{r} \\
& \vec{E}=-\vec{\nabla} V \\
& Q=C V \\
& C_{e q}=C_{1}+C_{2}(\text { In parallel }) \\
& \frac{1}{C_{e q}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}(\text { In series }) \\
& C=\kappa C_{0} \\
& U=\frac{Q^{2}}{2 C} \\
& U=\int \frac{\epsilon_{0}}{2}|\vec{E}|^{2} d V \\
& I=\frac{d Q}{d t} \\
& \Delta V=I R \\
& C=\epsilon_{0} \frac{A}{d}  \tag{1}\\
& R=\rho \frac{l}{A} \\
& \rho(T)=\rho\left(T_{0}\right)\left(1+\alpha\left(T-T_{0}\right)\right) \\
& \vec{\nabla} f=\frac{\partial f}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\theta}+\frac{1}{r \sin (\theta)} \frac{\partial f}{\partial \phi} \hat{\phi} \\
& \vec{\nabla} \cdot \vec{V}=\frac{\partial\left(r^{2} V_{r}\right)}{r^{2} \partial r}+\frac{1}{r \sin \theta}\left(\frac{\partial\left(V_{\theta} \sin \theta\right)}{\partial \theta}+\frac{\partial V_{\phi}}{\partial \phi}\right) \\
& \text { (Spherical Coordinates) } \\
& \epsilon_{0}=8.9 \times 10^{-12} \mathrm{Fm}^{-1}
\end{align*}
$$

