University of California, Berkeley Department of Mechanical Engineering ME 104, Fall 2016

Final Examination (14 December 2016)

- Please write your name on the booklet every sheet.
- \bullet Start each problem on a new sheet.
- Write on one side of the page only.
- Number the sheets.

Problem 1

Consider a particle B moving along a space curve C. Let s be the arclength of C. The position vector of B at time t is given by

$$\mathbf{r} = \mathbf{\chi}(B, t) = x \,\mathbf{i} + y \,\mathbf{j} + z \,\mathbf{k}. \tag{1}$$

Let $\{\mathbf{e}_t, \mathbf{e}_n, \mathbf{e}_b = \mathbf{e}_t \times \mathbf{e}_n\}$ be the Serret-Frenet basis and recall that

$$\frac{d\mathbf{e}_t}{ds} = \kappa \, \mathbf{e}_n,\tag{2}$$

where $\kappa \geq 0$ is the curvature of \mathcal{C} .

(a) Show that the velocity and acceleration of B may be expressed as

$$\mathbf{v} = \dot{s} \, \mathbf{e}_t, \quad \mathbf{a} = \ddot{s} \, \mathbf{e}_t + \kappa \dot{s}^2 \, \mathbf{e}_n. \tag{3}$$

(b) Suppose that during an interval of time, the coordinates of a particle moving along a channel in a horizontal plane are specified in meters by

$$x = 0.3 t, \quad y = 0.5 t^2.$$
 (4)

Calculate the velocity and acceleration of the particle and evaluate them at $t=0.2\,\mathrm{s}$.

- (c) Calculate the unit tangent vector \mathbf{e}_t and unit normal vector \mathbf{e}_n at t = 0.2 s.
- (d) Calculate the tangential and normal components of acceleration at $t = 0.2 \,\mathrm{s}$.
- (e) Calculate the radius of curvature, $\rho = \frac{1}{\kappa}$, for t = 0.2 s.

Problem 2

Consider a rigid plate which is rotating with constant angular velocity $\omega = 2.5 \, \mathbf{k}$ rad/s about a vertical axle OZ. Place a corotational basis $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 = \mathbf{k}\}$ on the plate. Suppose that a particle \mathbf{g} is moving across the plate and that its position vector is given by

$$\mathbf{r} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2. \tag{5}$$

(a) Show that the velocity of \$\mathbb{g}\$ can be expressed as

$$\mathbf{v} = \mathbf{\mathring{r}} + \boldsymbol{\omega} \times \mathbf{r},\tag{6}$$

where

$$\mathring{\mathbf{r}} = \dot{x}_1 \, \mathbf{e}_1 + \dot{x}_2 \, \mathbf{e}_2 \tag{7}$$

is the corotational rate of r.

(b) Show that the acceleration of A can be expressed as

$$\dot{\mathbf{v}} = \mathbf{\mathring{r}} + 2\,\boldsymbol{\omega} \times \mathbf{\mathring{r}} + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}), \tag{8}$$

where $\mathring{\mathbf{r}}$ is the corotational rate of $\mathring{\mathbf{r}}.$

- (c) What is the velocity and acceleration of the particle A' that belongs to the plate and with which A is coincident at the instant t?
- (d) If x_1 and x_2 are specified in meters by

$$x_1 = 0.3 t, x_2 = 0.2 t^2,$$
 (9)

calculate the magnitude of the velocity of B at t=5 s.

Problem 3

A body \mathcal{B}_1 of mass 2m kg is sliding along a smooth horizontal rod with velocity v m/s. It collides with a stationary body \mathcal{B}_2 of mass m kg and becomes attached to it. The pair \mathcal{B}_1 and \mathcal{B}_2 subsequently collide with another stationary body \mathcal{B}_3 of mass m kg and become attached to it.

- (a) Use Newton's second and third laws to prove that the linear momentum of the combined body $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{B}_3$ is conserved.
- (b) Calculate the velocity of $\mathcal B$ after the second impact.
- (c) Calculate the fractional loss, $\frac{T-T'}{T}$, of kinetic energy.
- (d) If, after some time, all three bodies become separated again, write an equation that their velocities v'_1, v'_2, v'_3 must satisfy. Without any further information, can we solve for v'_1, v'_2 and v'_3 (Explain.)?

Problem 4

Let OZ be a rigid massless vertical axle. Let three particles, each of mass m kg, be attached to the axle by <u>massless</u> rigid rods, each of length ℓ m, and lying along the X and Y axes, as indicated in Fig.1.

Figure 1: X,Y,Z are fixed axes in a Newtonian space

Suppose that the particles rotate rigidly about OZ with angular velocity $\omega = 2t \mathbf{k} \text{ rad/s}$. Attach a corotational basis $\{\mathbf{e}_1(t), \mathbf{e}_2(t), \mathbf{e}_3(t)\}$ to the body, with $\mathbf{e}_1(0) = \mathbf{i}$, $\mathbf{e}_2(0) = \mathbf{j}$, and $\mathbf{e}_3 = \mathbf{k}$ for all t.

- (a) Calculate the linear momentum of the body $\mathcal B$ consisting of the 3 particles. Calculate the resultant force that must act on $\mathcal B$.
- (b) The inertia tensor of \mathcal{B} about O is defined by

$$\mathbf{I}^{o} = \sum_{K=1}^{3} m_{K} \left[(\mathbf{r}_{K} \cdot \mathbf{r}_{K}) \mathbf{I} - \mathbf{r}_{K} \otimes \mathbf{r}_{K} \right], \tag{10}$$

where **I** is the identity tensor and \otimes denotes the tensor product $[(\mathbf{a} \otimes \mathbf{b})\mathbf{u} = \mathbf{a}(\mathbf{b} \cdot \mathbf{u})]$. Also, the angular momentum of \mathcal{B} about O is given by

$$\mathbf{H}^{o} = \mathbf{I}^{o} \boldsymbol{\omega}. \tag{11}$$

Evaluate Io and Ho.

- (c) Apply Euler's second law to calculate the resultant torque that must act on B
- (d) What are the eigenvectors (or principal directions) and the eigenvalues (or principal moments of inertia) of the inertia tensor I^o of \mathcal{B} ?

Problem 5

Consider a 3-dimensional rigid body \mathcal{B} which is rotating about an axle lying along a fixed axis OZ. Let the unit vector \mathbf{k} point along OZ, and let $\{\mathbf{i}, \mathbf{j}, \mathbf{k}\}$ be a fixed orthonormal basis in a Newtonian frame of reference. Define a right-handed orthonormal basis $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$, which is fixed to the body (i.e., it is corotational), by

$$\mathbf{e}_{1} = \mathbf{Q}(\mathbf{k}, \theta) \, \mathbf{i} = \cos \theta \, \mathbf{i} + \sin \theta \, \mathbf{j},$$

$$\mathbf{e}_{2} = \mathbf{Q}(\mathbf{k}, \theta) \, \mathbf{j} = -\sin \theta \, \mathbf{i} + \cos \theta \, \mathbf{j},$$

$$\mathbf{e}_{3} = \mathbf{Q}(\mathbf{k}, \theta) \, \mathbf{k} = \mathbf{k},$$
(12)

where $\mathbf{Q}(\mathbf{k}, \theta)$ is the rotation tensor for B, and is given by

$$\mathbf{Q}(\mathbf{k}, \theta) = \cos \theta \left(\mathbf{i} \otimes \mathbf{i} + \mathbf{j} \otimes \mathbf{j} \right) - \sin \theta \left(\mathbf{i} \otimes \mathbf{j} - \mathbf{j} \otimes \mathbf{i} \right) + \mathbf{k} \otimes \mathbf{k} = \mathbf{e}_1 \otimes \mathbf{i} + \mathbf{e}_2 \otimes \mathbf{j} + \mathbf{e}_3 \otimes \mathbf{k}.$$
(13)

- (a) Calculate the value of the rotation tensor $\mathbf{Q}(\mathbf{k}, 40^{\circ})$ and write out the matrix of $\mathbf{Q}(\mathbf{k}, 40^{\circ})$, using the vectors \mathbf{i} , \mathbf{j} , \mathbf{k} to form a basis.
- (b) If a particle $A \in \mathcal{B}$ is located at

$$\mathbf{R}_{A} = 0.2 \,\mathbf{i} - 0.5 \,\mathbf{j} + 0.3 \,\mathbf{k} \,$$
 m (14)

in the initial configuration of \mathscr{B} ($\theta = 0$), find its new location

$$\mathbf{r}_{A} = \mathbf{Q}(\mathbf{k}, 40^{\circ}) \,\mathbf{R}_{A}. \tag{15}$$

Problem 6

Consider a rigid body \mathscr{B} of mass m rotating about a fixed axis OZ in a Newtonian space, with angular velocity $\omega = \omega \, \mathbf{k} = \dot{\theta} \, \mathbf{k}$. Place a corotational basis $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 = \mathbf{k}\}$ on \mathscr{B} , with $\mathbf{e}_1 = \mathbf{i}$, $\mathbf{e}_2 = \mathbf{j}$ at time t = 0. The inertia tensor about O at time t may be expressed as

$$\mathbf{I}^o = I_{XX}^o \, \mathbf{e}_1 \otimes \mathbf{e}_1 + I_{XY}^o \, \mathbf{e}_1 \otimes \mathbf{e}_2 + \dots + I_{ZZ}^o \, \mathbf{e}_3 \otimes \mathbf{e}_3. \tag{16}$$

(a) Recall that the angular momentum of $\mathcal B$ about O may be expressed as

$$\mathbf{H}^{o} = \mathbf{I}^{o} \,\boldsymbol{\omega}. \tag{17}$$

Resolve Eq. (17) on the corotational basis.

(b) If

$$\mathbf{M}^{o} = M_{1}^{o} \,\mathbf{e}_{1} + M_{2}^{o} \,\mathbf{e}_{2} + M_{3}^{o} \,\mathbf{e}_{3} \tag{18}$$

is the resultant torque acting on \mathcal{B} , prove that

$$M_{1}^{O} = I_{XZ}^{O} \dot{\omega} - I_{YZ}^{O} \omega^{2},$$

$$M_{2}^{O} = I_{YZ}^{O} \dot{\omega} + I_{XZ}^{O} \omega^{2},$$

$$M_{3}^{O} = I_{ZZ}^{O} \dot{\omega}.$$
(19)

(c) Consider an unbalanced rotor for which

$$I_{xz}^{O} = 2 \text{ kg} \cdot \text{m}^{2}, \qquad I_{yz}^{O} = 4 \text{ kg} \cdot \text{m}^{2}, \qquad I_{zz}^{O} = 150 \text{ kg} \cdot \text{m}^{2},$$
 (20)

 $I_{xz}^o = 2 \text{ kg} \cdot \text{m}^2, \qquad I_{yz}^o = 4 \text{ kg} \cdot \text{m}^2, \qquad I_{zz}^o = 150 \text{ kg} \cdot \text{m}^2, \qquad (20 \text{ and } \boldsymbol{\omega} = \omega(t) \, \mathbf{e}_3, \ \omega(0) = 0. \text{ Suppose that during an interval of time } 0 \le t \le 25 \text{ s, a torque}$

$$M_3^o = 30 \text{ N} \cdot \text{m}$$
 (21)

is being supplied by a motor. Calculate $\omega(t)$, $H_1^o(t)$, $H_2^o(t)$, $H_3^o(t)$, $M_1^o(t)$, and $M_2^o(t)$, and evaluate these at t=25 s evaluate these at t = 25 s.

Problem 7

Consider a compound pendulum that consists of massless rigid rod to which is attached a rigid ball of mass m kg and radius r m (see Fig.2). The distance from the pivot O to the mass center C of the ball is ℓ m.

Figure 2

Place a corotational basis

$$\begin{pmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \\ \mathbf{e}_3 \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{i} \\ \mathbf{j} \\ \mathbf{k} \end{pmatrix}$$
(22)

on the rod. The inertia tensor of the ball about its mass center is

$$\mathbf{I}^{c} = \frac{2}{5}mr^{2}\mathbf{I} \text{ kg} \cdot \text{m}^{2}.$$
 (23)

(a) Apply the transfer theorem, namely

$$\mathbf{I}^{o} = \mathbf{I}^{c} + m \left[(\mathbf{\bar{r}} \cdot \mathbf{\bar{r}}) \, \mathbf{I} - \mathbf{\bar{r}} \otimes \mathbf{\bar{r}} \right], \tag{24}$$

to calculate Io.

- (b) Apply Euler's law for angular momentum about O to obtain the differential equation for $\theta(t)$.
- (c) Let $N = N_1 e_1 + N_2 e_2 + N_3 e_3$ be the force supplied by the axle. Calculate N_1 , N_2 , and N_3 as functions of θ and its time derivatives.
- (d) Recall that the kinetic energy of the pendulum is given by

$$T = \frac{1}{2} I_{zz}^{\scriptscriptstyle O} \dot{\theta}^2 \tag{25}$$

Argue that energy is conserved for the pendulum, and write out its energy equation, taking the potential energy is taken to be zero in the stable equilibrium configuration.

Problem 8

Consider a rigid wheel that is a narrow disk. Suppose that it is rolling without slipping along a rough horizontal straight road. Let the origin O be at the point of contact of the wheel with the ground in the reference configuration. Let \mathbf{i} point horizontally and to the right, and let \mathbf{j} point vertically downwards. At time t, the position vector of the mass center C of the wheel is

$$\bar{\mathbf{r}} = x\,\mathbf{i} - r\mathbf{j},\tag{26}$$

where r is the radius of the wheel and x is the horizontal displacement of C. The angular velocity of the wheel is $\omega = \omega \mathbf{k} = \dot{\theta} \mathbf{k}$, and its angular acceleration is $\alpha = \alpha \mathbf{k} = \dot{\omega} \mathbf{k}$. The moment of inertia of the wheel about the principal axis CZ is

$$I_{zz}^c = \frac{1}{2}mr^2 \tag{27}$$

where m is the mass of the wheel.

- (a) Obtain expressions for the velocity $\bar{\mathbf{v}}$ and acceleration $\bar{\mathbf{a}}$ of C at time t.
- (b) What is the kinematical relationship between \dot{x} and $\dot{\theta}$?
- (c) Recall that if A is any point on the wheel, then the velocity of A is given by

$$\mathbf{v}_A = \bar{\mathbf{v}} + \boldsymbol{\omega} \times (\mathbf{r}_A - \bar{\mathbf{r}}). \tag{28}$$

Suppose that B is the particle on the wheel with position vector

$$\mathbf{r}_B = \bar{\mathbf{r}} + r\,\mathbf{i} \tag{29}$$

 $\mathbf{r}_B = \bar{\mathbf{r}} + r\,\mathbf{i}$ at time t. Calculate the velocity \mathbf{v}_B of B as a function of \dot{x} .

(d) Recall that the kinetic energy of the wheel may be expressed in the form

$$T = \bar{T} + \tilde{T},\tag{30}$$

where

$$\bar{T} = \frac{1}{2}m\bar{\mathbf{v}}\cdot\bar{\mathbf{v}}, \quad \tilde{T} = \frac{1}{2}I_{zz}^{C}\omega^{2}.$$
(31)

Calculate T as a function of \dot{x} .

(e) Consider an unpowered cart that has four disk wheels, each of mass m kg, and also has an additional mass of 70m kg. Suppose that the cart is travelling along a road KLMN and that the wheels are all rolling without slipping. Let KL and MN be horizontal and let LM a gentle downward slope. Let h be the height of KL above MN in meters. Argue that the total mechanical energy E of the cart is conserved. If the cart is travelling at a constant speed v_0 along KL, what would its speed v be along KL?