1. (20 points) Let $A=\left[\begin{array}{cccc}1 & -1 & 2 & 2 \\ -2 & 3 & -3 & -1 \\ 3 & -3 & 6 & 7\end{array}\right]$ and $\vec{b}=\left[\begin{array}{c}1 \\ -3 \\ 3\end{array}\right]$.
a) Find all solutions to $A \vec{x}=\overrightarrow{0}$ in the parametric vector form.
b) Do the same for $A \vec{x}=\vec{b}$.
c) Do the columns of A span \mathbb{R}^{3} ? Justify your answer.
d) Are the columns of A linearly independent? Justify your answer.

A:
Write down the augmented matrix

$$
\left[\begin{array}{cccc|c}
1 & -1 & 2 & 2 & 0 \\
-2 & 3 & -3 & -1 & 0 \\
3 & -3 & 6 & 7 & 0
\end{array}\right]
$$

Perform row elimination and obtain REF (one possible form)

$$
\left[\begin{array}{llll|l}
1 & 0 & 3 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

We find that x_{3} is a free variable.
The solution set of the corresponding homogeneous equation is

$$
x_{3}\left[\begin{array}{c}
-3 \\
-1 \\
1 \\
0
\end{array}\right] .
$$

b)

Same as a), write down the augmented matrix

$$
\left[\begin{array}{cccc|c}
1 & -1 & 2 & 2 & 1 \\
-2 & 3 & -3 & -1 & -3 \\
3 & -3 & 6 & 7 & 3
\end{array}\right] .
$$

The REF is

$$
\left[\begin{array}{cccc|c}
1 & 0 & 3 & 0 & 0 \\
0 & 1 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

A special solution is $\left[\begin{array}{c}0 \\ -1 \\ 0 \\ 0\end{array}\right]$.

The parametric solution is

$$
\left[\begin{array}{c}
0 \\
-1 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-3 \\
-1 \\
1 \\
0
\end{array}\right]
$$

c) Yes. In a) we find that the REF of A has a pivot in every row, so the columns of A span \mathbb{R}^{3}.
d) No. Since the equation $A \vec{x}=0$ has a non-trivial solution, the columns of A are not linearly independent.
2. (15 points) True or False: If True, explain why. If False, give an explicit numerical example for which the statement does not hold.
a) Let A and B be n by n matrices such that A is invertible and B is not invertible. Then, $A B$ is not invertible.
b) Let $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ be vectors in \mathbb{R}^{n}. If $\left\{\vec{v}_{1}, \vec{v}_{2}\right\},\left\{\vec{v}_{1}, \vec{v}_{3}\right\}$, and $\left\{\vec{v}_{2}, \vec{v}_{3}\right\}$ are each linearly independent sets, then $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is a linearly independent set.
c) If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, and $a d-b c \neq 0$, then A is invertible.

A:
a) This is true.

Since A is invertible, A^{-1} is invertible as well. Assume $A B$ is invertible, then $A^{-1}(A B)=B$ is also invertible. But this conflicts with the assumption that B is not invertible.
b) This is false.

A simple example is in \mathbb{R}^{2}, where $v_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], v_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right], v_{3}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. When you adjoin any two of these vectors in a 2 by 2 matrix, you are either in an echelon form with 2 pivots, or just a single row swap away. But, any linearly independent set in \mathbb{R}^{2} can have at most two vectors in it because the dimension of \mathbb{R}^{2} is 2 , so $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly dependent.
c) This is true.

First a, b cannot be both zero, otherwise $a d-b c=0$. Assume $a \neq 0$ (otherwise we can exchange the first and the second row, and the condition is the same as $b c-a d \neq 0$), the REF is $A=\left[\begin{array}{cc}a & c \\ 0 & d-b c / a\end{array}\right]$. The REF has two pivots if and only if $a d-b c \neq 0$. Hence A is invertible if and only if $a d-b c \neq 0$.
3. (5 points) Compute the matrix inverse of $A=\left[\begin{array}{ccc}1 & -2 & 3 \\ -2 & 3 & -4 \\ 2 & 0 & -1\end{array}\right]$

A:
Consider the augmented matrix $[A \mid I]$
Perform row reduction and convert the left part to the RREF.
The final answer is $A^{-1}=\left[\begin{array}{ccc}3 & 2 & 1 \\ 10 & 7 & 2 \\ 6 & 4 & 1\end{array}\right]$.
4. (10 points) a) In \mathbb{R}^{2}, the operation of rotating a vector by an angle θ along the counter clockwise direction is a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Write down A, the standard matrix for T.
b) Let B be the standard matrix for rotation by an angle ϕ and let C be the standard matrix for rotation by the angle $(\theta+\phi)$, both along the counter clockwise direction. Write down the matrix B and C. Verify that $A B=C$

A:
a) $T\left(e_{1}\right)=\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right], T\left(e_{2}\right)=\left[\begin{array}{c}-\sin \theta \\ \cos \theta\end{array}\right]$.

Hence the standard matrix is
$A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$.
b) Similar to a), we find $B=\left[\begin{array}{cc}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right]$ and $C=\left[\begin{array}{cc}\cos (\theta+\phi) & -\sin (\theta+\phi) \\ \sin (\theta+\phi) & \cos (\theta+\phi)\end{array}\right]$.

$$
A B=\left[\begin{array}{ll}
\cos \theta \cos \phi-\sin \theta \sin \phi & -\cos \theta \sin \phi-\sin \theta \cos \phi \\
\sin \theta \cos \phi+\cos \theta \sin \phi & -\sin \theta \sin \phi+\cos \theta \cos \phi
\end{array}\right] .
$$

Use the relation $\cos (\theta+\phi)=\cos \theta \cos \phi-\sin \theta \sin \phi$ and $\sin (\theta+\phi)=\sin \theta \cos \phi+$ $\cos \theta \sin \phi$ we find $C=A B$.

