1. (10 points) Compute the determinant $\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1\end{array}\right|$

A: Perform elementary row reduction. One possible route is (5 points)

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & -1 \\
1 & -1 & 1
\end{array}\right|=\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & -2 \\
0 & -2 & 0
\end{array}\right|=4\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right| .
$$

Perform cofactor expansion for the $(1,1)$ element (3 points)

$$
=(-1)^{1+1} 4\left|\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right|
$$

The final answer is -4 . (2 points)
2. True or False (15 points) If True, explain why. If False, give a counterexample.
(a) Let A be an $n \times n$ matrix. If two columns of A are the same, then the determinant $\operatorname{det} A=0$.

A: True. (2 points)If two columns of A are the same, then the columns of A are linearly dependent. So A is not invertible and $\operatorname{det} A=0$. (3 points)
(b) If vectors $\vec{u}, \vec{v} \in \mathbb{R}^{2}$ and $\vec{u} \cdot \vec{v}=1$, then $\{\vec{u}, \vec{v}\}$ is also a basis for \mathbb{R}^{2}.

A: False. (2 points) Consider $\vec{u}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \vec{v}=\vec{u}$. Then $\vec{u} \cdot \vec{v}=1$ is satisfied, but \vec{u}, \vec{v} are linearly dependent and cannot be a basis. (3 points)
(c) If the $n \times n$ matrix A is the matrix representation of a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with respect to one basis, and B is the matrix representation of the same linear transformation with respect to a different basis, then $\operatorname{det}(A)=\operatorname{det}(B)$.

A: True. (2 points) We have $A=P^{-1} B P$, where P is the invertible matrix representing the change of basis. Then $\operatorname{det}(A)=\operatorname{det}\left(P^{-1}\right) \operatorname{det}(B) \operatorname{det}(P)=\operatorname{det} B$. (3 points)
3. (15 points) Let $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ by $p(x) \mapsto(x \cdot p(x))^{\prime}$. (Note $\frac{d}{d x} f(x) \equiv f^{\prime}(x) \equiv$ $\left.(f(x))^{\prime}\right)$.
(a) Write out the matrix representation $[T]_{B}$ of this transformation with respect to the basis $B=\left\{1,2 x, x^{2}-1\right\}$.

A: Since that $T(1)=(x)^{\prime}=1, T(2 x)=\left(2 x^{2}\right)^{\prime}=4 x$ and $T\left(x^{2}-1\right)=\left(x^{3}-x\right)^{\prime}=$ $3 x^{2}-1$. (3 points) Expressing these as coordinate vectors, we get

$$
[T(1)]_{B}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],[T(x)]_{B}=\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right],\left[T\left(x^{2}\right)\right]_{B}=\left[\begin{array}{l}
2 \\
0 \\
3
\end{array}\right]
$$

(3 points) Putting them all together in the same matrix gives

$$
[T]_{B}=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

(4 points)
(b) Evaluate the B-coordinate of $x^{2}+3$, and use your matrix from (a) to find $T\left(x^{2}+3\right)$.
$\mathbf{A}:\left[x^{2}+3\right]_{B}=\left[\begin{array}{l}4 \\ 0 \\ 1\end{array}\right],(2$ points $)$ so

$$
\left[T\left(x^{2}+3\right)\right]_{B}=[T]_{B}\left[x^{2}+3\right]_{B}=\left[\begin{array}{l}
6 \\
0 \\
3
\end{array}\right] .
$$

Thus, $T\left(x^{2}+3\right)=6+3\left(x^{2}-1\right)=3 x^{2}+3$. (3 points)
4. (15 points) Let $V=\mathbb{R}^{2}, B=\left\{\left[\begin{array}{c}-1 \\ 8\end{array}\right],\left[\begin{array}{c}1 \\ -7\end{array}\right]\right\}$, and $C=\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$.
(a) Find the change of basis matrix $\underset{C \leftarrow B}{P}$.

A: Find $\underset{C \leftarrow B}{P}$ by using (3 points)

$$
\left.\underset{C \leftarrow B}{P}=\underset{C \leftarrow \mathcal{E E} \leftarrow B}{P} \underset{\mathcal{E} \leftarrow C}{P}{ }^{P}\right)^{-1} \underset{\mathcal{E} \leftarrow B}{P} .
$$

Since (2 points)

$$
\underset{\mathcal{E} \leftarrow C}{P}=\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right], \quad \underset{\mathcal{E} \leftarrow B}{P}=\left[\begin{array}{cc}
-1 & 1 \\
8 & -7
\end{array}\right],
$$

Then (3 points)

$$
(\underset{\mathcal{E} \leftarrow C}{P})^{-1}=\left[\begin{array}{cc}
-1 & 1 \\
2 & -1
\end{array}\right] .
$$

we have (2 points)

$$
\underset{C \leftarrow B}{P}=\left[\begin{array}{cc}
-1 & 1 \\
2 & -1
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
8 & -7
\end{array}\right]=\left[\begin{array}{cc}
9 & -8 \\
-10 & 9
\end{array}\right] .
$$

(b) Use the change of basis matrix $\underset{C \leftarrow B}{P}$ obtained in a) to express $\vec{x}=\left[\begin{array}{c}1 \\ -7\end{array}\right]$ as a linear combination of the vectors in C.

A: First compute $[\vec{x}]_{B}$. In this case, we directly obtain (3 points)

$$
[\vec{x}]_{B}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Then (2 points)

$$
[\vec{x}]_{C}=\underset{C \leftarrow B}{P}[\vec{x}]_{B}=\left[\begin{array}{c}
-8 \\
9
\end{array}\right] .
$$

5. (15 points) Diagonalize the following matrices, if possible:
(a) $\left[\begin{array}{ll}3 & 2 \\ 0 & 3\end{array}\right]$

A: $\operatorname{det}(A-\lambda I)=(3-\lambda)^{2}-0$, so we get $\lambda=3$ as a double root. (2 points) We see that $A-3 I=\left[\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right]$ only has a one-dimensional null space. Therefore, as the dimension of an eigenspace (geometric multiplicity) does not match the multiplicity of the corresponding root (algebraic multiplicity). (2 points) Hence A is not diagonalizable.(2 points)
(b) $\left[\begin{array}{lll}3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3\end{array}\right]$.

A: (3 points)

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =(3-\lambda)\left[(3-\lambda)^{2}-1\right]-[(3-\lambda)-1]+[1-(3-\lambda)] \\
& =(3-\lambda)\left[\lambda^{2}-6 \lambda+9-1\right]-3+\lambda+1+1-3+\lambda \\
& =-\lambda^{3}+9 \lambda^{2}-24 \lambda+20 \\
& =-(\lambda-5)(\lambda-2)^{2}
\end{aligned}
$$

Now,

$$
A-2 I=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

which has a null space spanned by $\left[\begin{array}{c}1 \\ -1 \\ 0 \\ 3\end{array}\right]$ and $\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right] \cdot(2$ points $)$

$$
A-5 I=\left[\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right],
$$

which has a null space spanned by $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \cdot(2$ points $)$
Thus, $A=P D P^{-1}$, where

$$
P=\left[\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 0 & 1 \\
0 & -1 & 1
\end{array}\right], D=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 5
\end{array}\right] .
$$

(2 points)

