ANSWERS

1. Transient response of reactor models

(a) For a PFR with first-order decay, the outlet concentration, C, in steady state is $C_{\text {in }} \exp (-k \theta)$, where $\theta=V / Q$. In this problem, $\theta=2 \mathrm{~h}$ and $k \theta=1.4$. So, the outlet concentration is $0.247 \times$ $C_{\text {in }}$. When $C_{\text {in }}=150 \mu \mathrm{~g} / \mathrm{m}^{3}$, then $C=37.0 \mu \mathrm{~g} / \mathrm{m}^{3}$. Similarly, when $C_{\text {in }}=50 \mu \mathrm{~g} / \mathrm{m}^{3}$, then $C=$ $12.3 \mu \mathrm{~g} / \mathrm{m}^{3}$. The step change from high to low happens at the inlet at time $\mathrm{t}=0$. At the outlet, there is a corresponding step change that occurs at time $\theta=2 \mathrm{~h}$ later. Sketch is presented below.

(b) For a CMFR with first-order decay, the steady state concentration at the outlet, C, is $C_{\text {in }} /(1+k \theta)$. For the given conditions, $1 /(1+k \theta)=0.417$. The initial condition that applies for $(t \leq 0)$ is the steady-state solution when $C_{\text {in }}=150 \mu \mathrm{~g} / \mathrm{m}^{3}$; that is $62.5 \mu \mathrm{~g} / \mathrm{m}^{3}$. For $t>0$, the ultimate steady-state concentration applies when $C_{\text {in }}=50 \mu \mathrm{~g} / \mathrm{m}^{3}$; that is $20.8 \mu \mathrm{~g} / \mathrm{m}^{3}$. The time pattern of response follows an exponential decay from the initial to the final steady state value with a characteristic response time $\tau \sim \theta /(1+k \theta)=0.83 \mathrm{~h}$. The governing equation is $\mathrm{d}(C V) / \mathrm{d} t=C_{\text {in }} Q-(Q+k V) C$ or $\mathrm{d} C / \mathrm{d} t=(Q / V) C_{\text {in }}-(Q / V+k) C$. This is of the form $\mathrm{d} C / \mathrm{d} t=$ $S-L C$ and the characteristic response time is $1 / L$. The concentration sketch versus time appears below.

2. Sedimentation for particle control in drinking water treatment

(a) The overflow rate is Q / A_{s}. Here, $Q=6 \mathrm{~m} \times 3 \mathrm{~m} \times 600 \mathrm{~m} / \mathrm{d}$ and $A_{\mathrm{s}}=6 \mathrm{~m} \times 25 \mathrm{~m}$. So, $Q / A_{\mathrm{s}}=$ $1800 / 25=72 \mathrm{~m} / \mathrm{d}$.
(b) This is just a unit conversion, since the critical settling velocity equals the overflow rate for a sedimentation basin. Since $72 \mathrm{~m}=7200 \mathrm{~cm}$ and $1 \mathrm{~d}=86400 \mathrm{~s}$, the critical settling velocity is $7200 / 86400=0.083 \mathrm{~cm} / \mathrm{s}$.
(c) A particle will be captured with 75% efficiency if its settling velocity is equal 75% of the critical settling velocity, i.e. $0.0625 \mathrm{~cm} / \mathrm{s}$. Let's guess that Stokes law holds. From equation in handout, and ignoring the slip correction factor, we have $d_{\mathrm{p}}^{2}=\left(18 \mu v_{\mathrm{s}}\right) /\left[g\left(\rho-\rho_{\mathrm{f}}\right)\right]$. Look up parameter values and use cgs system consistently: $\mu=0.01, v_{\mathrm{s}}=0.0625, g=980, \rho-\rho_{\mathrm{f}}=$ 1.5. Substitute and solve for $d_{\mathrm{p}}=0.0028 \mathrm{~cm}=28 \mu \mathrm{~m}$. (Check $\operatorname{Re}_{\mathrm{p}}=0.0028 \times 0.0625 \times$ $1 / 0.01=0.02<0.3$, so Stokes law is okay!)

3. Disinfection performance in drinking water treatment

(a) At $0.2 \mathrm{mg} / \mathrm{L}$, we can read from the plot that 99% inactivation occurs with a contact time of three minutes. We can recognize that each log removal requires the same amount of time. The 99% inactivation corresponds to $2-\log$ removal; the target is $3-\log$ removal. Each $1-\log$ removal requires $3 \mathrm{~min} / 2=1.5$ minutes, so, to realize the design goal, we would need a hydraulic detention time of $3 \times 1.5=4.5 \mathrm{~min}$. (Can also solve the problem by computing the rate constant, k , for the given concentration: $N / N_{\mathrm{o}}=0.01=\exp (-k t)$, so at $0.2 \mathrm{mg} / \mathrm{L}, k=$ $\ln (100) / 3 \mathrm{~min}=1.53$ per minute. To achieve 99.9% inactivation, we need a contact time that satisfies $t=\ln (1000) / 1.53=4.5 \mathrm{~min}$.)
(b) For the CMFR, must solve for k. The figure shows that with $3 \mathrm{mg} / \mathrm{L}$ concentration, the time needed in a batch reactor to achieve 99% inactivation would be 0.1 min . The corresponding rate constant is $\ln (100) / 0.1=46$ per minute. The steady-state performance of a CMFR yields $\mathrm{N} / \mathrm{No}=1 /(1+\mathrm{k}$ theta). With given k and theta $=5 \mathrm{~min}$, we have k theta $=230$ and so $\mathrm{N} / \mathrm{No}=$ $1 / 231=0.004$. Consequently, these conditions yield 99.6% inactivation. The corresponding n value is obtained from $-\log (0.004)=2.4 \log$ inactivation.

3. Characteristic response time for a lake following contaminant spill

Perhaps the strongest way to approach this problem is to write a time-dependent material balance equation for the contaminant in the lake: $\mathrm{d}(C V) / \mathrm{d} t=\mathrm{Q} C-k_{\mathrm{gl}} A C-k V C$. Let's treat V as constant so it can be taken outside the derivative and we can divide both sides by V. The result is of the form $\mathrm{d} C / \mathrm{d} t=S-L C$, where $S=0$. The characteristic response time is $1 / L$, where $L=Q / V$ $+k_{\mathrm{gl}} A / V+k$. That is:

$$
\tau \sim \frac{1}{Q /{ }_{V}+k_{g l} A / V+k}
$$

