$$
\text { ME 132, Fall 2015, Quiz \# } 2
$$

$\# 1$	$\# 2$	$\# 3$	$\# 4$	$\# 5$	$\# 6$	Total	NAME
14	10	8	6	14	8	60	

Rules:

1. 2 sheets of notes allowed, 8.5×11 inches. Both sides can be used.
2. Calculator is allowed. Keep it in plain view on the desk next to you.
3. No laptops, phones, headphones, pads, tablets, or any other such device may be out. If such a device is seen after 1:10PM, your test will be confiscated, and you will get a 0 for the exam.
4. Sit with at least one open space between every student
5. The exam ends promptly at 2:00 PM.
6. Stop working, and turn in exams when notified.

Facts:

1. 3rd order stability test: The roots of the third-order polynomial

$$
\lambda^{3}+a_{1} \lambda^{2}+a_{2} \lambda+a_{3}
$$

all have negative real-parts if and only if $a_{1}>0, a_{3}>0$ and $a_{1} a_{2}>a_{3}$.
2. The characteristic polynomial of the 1 st order (vector) differential equation $\dot{x}(t)=A x(t)$ is $\operatorname{det}\left(\lambda I_{n}-A\right)$, where n is the dimension of x.

1. Remark: This is not a hard problem. Do not be scared off by the long description. A state-estimator, E, is a dynamical system that attempts to estimate the internal state x of a system G, by observing only the inputs, u, and outputs, y, of G. The estimator does not have access to the initial condition, $x(0)$ of the process. The system G is assumed to be governed by a known, linear, state-space model, namely

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}
$$

Since A, B, C are known, and the estimator has access to u and y, the strategy is that the estimator should be a mathematical copy of the process G, with state \hat{x}. The goal is to get \hat{x} to converge to x, asymptotically in time (regardless of u). Hence, it makes sense that the estimator's input should be the same input as the process (u), and the state, \hat{x}, inside the estimator, should be adjusted in some manner proportional to the difference between the process output y, and the estimator's prediction of y, in a way that makes $\hat{x}(t)-x(t) \rightarrow 0$ as $t \rightarrow \infty$, regardless of u and $x(0)$.
A diagram of such a system is shown below. Note that the estimator E has two inputs, "receiving" both u and y, and produces one output, namely producing the estimate, $x^{\text {est }}=\hat{x}$ of x.

All boxed quantities, A, B, C, L, F are matrices. The boxes labeled \int are integrators (note the signal definitions for x and \hat{x} and their time derivatives). All summing junction sign conventions, unless otherwise marked, are positive.
(a) Define

$$
z(t):=\left[\begin{array}{l}
x(t) \\
\hat{x}(t)
\end{array}\right]
$$

Fill in the matrices below, to complete the state-space model which governs the entire (process and estimator) system

and

$$
x^{\mathrm{est}}(t)=[\quad] z(t)
$$

(b) Define the estimation error, e as $e(t):=x(t)-\hat{x}(t)$. Show that e satisfies a simple, linear differential equation, whose right-hand side only involves, A, C, L and e.
(c) What is one important property that the matrix L must have in order for $\hat{x}(t)-x(t) \rightarrow$ 0 as $t \rightarrow \infty$, regardless of $u, x(0)$ and $\hat{x}(0) ?$
(d) What are some issues that are not addressed here, that might impact (and distinguish among) several various choices for L ?
2. Suppose $0<\xi<1$ and $\omega_{n}>0$. Consider the system

$$
\ddot{y}(t)+2 \xi \omega_{n} \dot{y}(t)+\omega_{n}^{2} y(t)=\omega_{n} \dot{u}(t)
$$

subject to the initial conditions $y\left(0^{-}\right)=0, \dot{y}\left(0^{-}\right)=0$, and the unit-step forcing function, namely $u(t)=0$ for $t=0$, and $u(t)=1$ for $t>0$. Show that the response is

$$
y(t)=\frac{1}{\sqrt{1-\xi^{2}}} e^{-\xi \omega_{n} t} \sin \left(\sqrt{1-\xi^{2}} \omega_{n} t\right)
$$

Hint: Recall that the set of all real-valued homogeneous solutions of $\ddot{y}(t)+2 \xi \omega_{n} \dot{y}(t)+$ $\omega_{n}^{2} y(t)=0$ is $y_{H}(t)=A e^{-\xi \omega_{n} t} \cos \left(\sqrt{1-\xi^{2}} \omega_{n} t\right)+B e^{-\xi \omega_{n} t} \sin \left(\sqrt{1-\xi^{2}} \omega_{n} t\right)$ where A and B are any real numbers.
3. Consider the 2 -state system governed by the equation $\dot{x}(t)=A x(t)$. Shown below are the phase-plane plots $\left(x_{1}(t)\right.$ vs. $\left.x_{2}(t)\right)$ for 4 different cases. Match the plots with the A matrices, and correctly draw in arrows indicating the evolution in time.

$$
A_{1}=\left[\begin{array}{rr}
-2 & 0 \\
3 & 1
\end{array}\right], \quad A_{2}=\left[\begin{array}{rr}
1 & 3 \\
-3 & 1
\end{array}\right], \quad A_{3}=\left[\begin{array}{ll}
-3 & 2 \\
-1 & 0
\end{array}\right], \quad A_{4}=\left[\begin{array}{rr}
-1 & 3 \\
-3 & -1
\end{array}\right]
$$

4. (a) What is the general form of the solution to the differential equation

$$
\ddot{x}(t)+6 \dot{x}(t)+5 x(t)=0
$$

(b) What is the general form of the solution to the differential equation

$$
\ddot{x}(t)+6 \dot{x}(t)+5 x(t)=-10
$$

Your expressions both should have two free constants.
5. A first-order process, with state x, input u, disturbance d and output y is governed by

$$
\dot{x}(t)=x(t)+u(t)+d(t), \quad y(t)=x(t)
$$

(a) Is the process stable?
(b) Suppose $x(0)=-3$, and $u(t)=d(t) \equiv 0$ for all $t \geq 0$. What is the solution $y(t)$ for $t \geq 0$.
(c) A PI (Proportional plus Integral) controller is proposed

$$
\begin{aligned}
u(t) & =K_{P}[r(t)-y(t)]+K_{I} z(t) \\
\dot{z}(t) & =r(t)-y(t)
\end{aligned}
$$

Define the state-vector q as

$$
q(t):=\left[\begin{array}{l}
x(t) \\
z(t)
\end{array}\right]
$$

Write the state-space model of the closed-loop system, with state q, inputs (d, r) and outputs (y, u).
(d) What is the closed-loop characteristic polynomial?
(e) For what values of K_{P} and K_{I} is the closed-loop system stable?
(f) The closed-loop system is 2 nd order. What are the appropriate values of K_{P} and K_{I} so that the closed-loop system eigenvalues are described by $\xi=0.8, \omega_{n}=0.5$?
(g) What are the appropriate values of K_{P} and K_{I} so that the closed-loop system eigenvalues are described by $\xi=0.8, \omega_{n}=1.0$?
(h) What are the appropriate values of K_{P} and K_{I} so that the closed-loop system eigenvalues are described by $\xi=0.8, \omega_{n}=2.0$?
6. A 2 nd-order, unstable process, with control input u, disturbance input d, and output y, is governed by the equation

$$
\ddot{y}(t)+\dot{y}(t)-y(t)=u(t)+d(t)
$$

A PI (Proportional plus Integral) controller is proposed, both to stabilize the system, and provide good disturbance rejection,

$$
\begin{aligned}
u(t) & =K_{P}[r(t)-y(t)]+K_{I} z(t) \\
\dot{z}(t) & =r(t)-y(t)
\end{aligned}
$$

Here r is a reference input.
(a) Using just the controller equations, express $\dot{u}(t)$ in terms of r, \dot{r}, y and \dot{y}.
(b) By differentiating the process equation, and substituting, derive the closed-loop differential equation relating r and d (and possibly their derivatives) to the output variable y (and its derivatives). The variable u should not appear in these equations.
(c) Using the 3rd-order test for stability, determine the conditions on K_{P} and K_{I} such that the closed-loop system is stable.

