
Physics 7B Midterm 1 Solutions - Fall 2017
Professor R. Birgeneau

Problem 1

(a) Let us first calculate the time of heating. From the definition of power, and using the
formula relating heat and change in temperature , we have

Q = (power)t = mC∆T (1)

so that

t =
mC∆T

(power)
=

1000 · 100

200
s (2)

= 500 s (3)

Now for the coefficient of linear expansion, we apply the linear expansion formula
directly and see that

α =
∆L

L0∆T
=

0.01

10 · 100
(◦C)−1 (4)

= 10−5 (◦C)−1 (5)

(b) For the final equilibrium temperature to be equal to the initial temperature, all of the
heat of the rod must go into melting the ice:

Q = |mrCr(Tf − T0)| < mL (6)

Initially, the ice water mixture is at 0◦C, so

m >
1000 · 100

300000
kg =

1

3
kg (7)

(c) Summing the heat transfers and setting them equal to zero, we have

Qr +Qw +mL = mrCr(Tf − Tr0) + (M +m)Cw(Tf − Tw0) +mL = 0 (8)

(9)

so that

Tf =
(m+M)CwTw0 +mrCrTr0 −mL

mrCr + (m+M)Cw
(10)

= 20◦C (11)

Problem 2

(a) The change in volume is given by the volume expansion formula:

∆V = V0β∆T = 3V0α∆T = (1m3)(3× 10−3/◦C)(100◦C) (12)

= 0.3m3 (13)

so that the final voume is Vf = 1.3 m3.



(b) Using the ideal gas law,

Pf =
nRTf
Vf

(14)

=

(
400

1.3

)
R Pa (15)

= 300R Pa (16)

Note that we are using just the numerical value of R in the above answer since we have
already incorporated its dimensions in the pascal unit.

(c) This is an isovolumetric process, so from the definition of entropy and the first law, we
have

dS =
dQ

T
=

1

T
(dU + PdV ) = CV n

dT

T
(17)

(18)

so

∆S =
5

2
R ln

(
400

300

)
J/K (19)

=
5

2
R ln

(
4

3

)
J/K (20)

where again we are just using the numerical value of R since we have absorbed its units
to get the units of entropy.

Problem 3

(a) If we look at the motion of a gas particle moving only in the x-direction, the time
between collisions is given by

∆t =
2L

vx
(21)

(b) The average force Fx on one of the walls considered in part (a) is given by

Fx =
∆p̄x
∆t

=
2p̄xv̄x

2L
=
mNv̄2x
L

(22)

using the fact that the directions are all isotropic, we have v̄2 = v̄2x+ v̄2y + v̄2z + v̄2w = 4v̄2x,
so

Fx = F =
mNv̄2

4L
(23)

(c) Using the equipartition theorem, we know that

K = 2kBT (24)



since each gas particle has 4 degrees of freedom. Using K = 1
2
mv̄2,

v̄2 = 4
kBT

m
(25)

so that

F =
NkBT

L
(26)

or, equivalently,

F

L3
L4 = P ∗Y = NkBT (27)

(d) From the isotropic nature of the dimensions, we know that we can get a count of particle
states from

number of states ∼ A exp

(
−m
2kT

(v2x + v2y + v2z + v2w)

)
dvxdvydvzdvw (28)

switching to spherical coordinates in 4D, the volume element dvxdvydvzdvw becomes
proportional to v3dv, where v2 = v2x + v2y + v2z + v2w. You can see this simply from
dimensional analysis - the original volume element has dimensions of (m/s)4, so even
without knowing how to do spherical coordinates in 4 spatial dimensions we can arrive at
this form. Up to dimensionless factors that arise from angular integrals in 4 dimensions,
we thus have

f(v) ∼
( m

2πkT

)2

v3e−
mv2

2kT (29)

Problem 4

(a) For Segment 1:

∆U1 = 0 (30)

W1 = nRTa ln

(
V2
V1

)
= PaV1 ln

(
V2
V1

)
(31)

Q1 = W1 (32)

For Segment 2:

∆U2 =
5

2
nR(T2 − T1) =

5

2
(PcV2 − PaV1) (33)

W2 = 0 (34)

Q2 = ∆U2 (35)



For Segment 3:

∆U3 = 0 (36)

W3 = nRT2 ln

(
V1
V2

)
= PcV2 ln

(
V1
V2

)
(37)

Q3 = W3 (38)

(39)

For Segment 4:

∆U4 =
5

2
nR(T1 − T2) =

5

2
(PaV1 − PcV2) (40)

W4 = 0 (41)

Q4 = ∆U4 (42)

(b) From the definition of efficiency,

ε =
W1 +W3

Q1 +Q4

(43)

=
PaV1 ln

(
V2
V1

)
+ PcV2 ln

(
V1
V2

)
PaV1 ln

(
V2
V1

)
+ 5

2
(PaV1 − PcV2)

(44)

(c) Since the Carnot engine is the most efficient engine, and our engine is not the Carnot
engine, our engine must be less efficient than the Carnot engine.

(d) Switching to a monatomic gas amounts to changing the 5
2

in the denominator of ε to
3
2
. Keeping everything else constant, this would increase the efficiency.

Problem 5

(a) For an adiabatic process, Q = 0, so first law tells us that

dU = −PdV = nCV dT (45)

or

PdV + nCV dT = 0 (46)

Where we have used the expression dU = nCV dT , which holds for an ideal gas. Next,
from the ideal gas law, we take a variation of all variables (but fixed particle number)
to obtain

PdV + V dP = nRdT (47)



plugging this definition of nRdT into our equation from the first law, we get

0 = nCV

(
PdV + V dP

nR

)
+ PdV (48)

= (CV +R)PdV + CV V dP (49)

= CPPdV + CV dP (50)

=
dP

P
+ γ

dV

V
(51)

where we have used CP = CV +R. Integrating, we have

ln

(
P2

P1

)
= ln

(
V γ
1

V γ
2

)
(52)

exponentiating both sides,

P1V
γ
1 = P2V

γ
2 (53)

(b) We replace the process in the diagram with an isothermal process so that

dS =
dQ

T
=
dU + dW

T
=
PdV

T
=
nRdV

V
(54)

integrating , we find

∆S = nR ln

(
Vb
Va

)
(55)


