Physics 7B Midterm 1 Solutions - Fall 2017
Professor R. Birgeneau

Problem 1

(a) Let us first calculate the time of heating. From the definition of power, and using the
formula relating heat and change in temperature , we have

@ = (power)t = mCAT (1)

so that

mCAT 1000 - 100
= s (2)

(power) 200

=500 s (3)

Now for the coefficient of linear expansion, we apply the linear expansion formula
directly and see that

AL 0.01 1

= = °C 4

LoAT  10-100 (*C) (4)

=107 (°C)™" (5)

«

(b) For the final equilibrium temperature to be equal to the initial temperature, all of the
heat of the rod must go into melting the ice:

Q = |m,C.(Ty — Tp)| <mL (6)
Initially, the ice water mixture is at 0°C', so

1000 - 100 1
S ke =~ k
™ 300000 8T 3 %8 (™)

(c) Summing the heat transfers and setting them equal to zero, we have

Qr + Qw + mlL = er’T(Tf — TrO) + (M + m)Cw(Tf — TwO) -+ mL =0 (8)

so that
M wTw T rTr - L
7, = (M M) CuTuo +mrCrTro = m (10)
m,.C, + (m+ M)C,,
=20°C (11)
Problem 2
(a) The change in volume is given by the volume expansion formula:
AV = VoBAT = 3VoaAT = (1m?)(3 x 107 /°C)(100°C) (12)
= 0.3m? (13)

so that the final voume is V; = 1.3 m?.



(b) Using the ideal gas law,

nRTf
Py = (14)
Vi
400
= 300R Pa (16)

Note that we are using just the numerical value of R in the above answer since we have
already incorporated its dimensions in the pascal unit.

(c¢) This is an isovolumetric process, so from the definition of entropy and the first law, we

have
aQ 1 dT
(18)
SO
) 400
AS=—-Rln | — K 1
S =R n(300> 3/ (19)
) 4
=—_Rln|( = K 2
~Rln (3) 3/ (20)

where again we are just using the numerical value of R since we have absorbed its units
to get the units of entropy.

Problem 3

(a) If we look at the motion of a gas particle moving only in the x-direction, the time
between collisions is given by

2L
At = — 21
= @)
(b) The average force F, on one of the walls considered in part (a) is given by
Ap, 20,0, mNuv2
F, = - - @ 29
At 2L L (22)
using the fact that the directions are all isotropic, we have v2 = v2 4 UZ + 02 o2 = 4u2
SO
mNv?
F,=F= 23
L (23)

(c) Using the equipartition theorem, we know that

K = 2kpT (24)



since each gas particle has 4 degrees of freedom. Using K = —mv2

kgT

V2 = 47 (25)
so that
NEkgT
F= LB (26)
or, equivalently,
Eriopy = NkpT (27)
I3

From the isotropic nature of the dimensions, we know that we can get a count of particle
states from

number of states ~ A exp ( (v + v +vi4w )> dvgdvy,dv,dv,, (28)

2kT

switching to spherical coordinates in 4D, the volume element dv,dv,dv.dv, becomes
proportional to v*dv, where v? = v? + vg + v2 + v2. You can see this simply from
dimensional analysis - the original volume element has dimensions of (m/s)?, so even
without knowing how to do spherical coordinates in 4 spatial dimensions we can arrive at
this form. Up to dimensionless factors that arise from angular integrals in 4 dimensions,
we thus have

Problem 4

()

m \2 5 _m?
J(0) ~ (27rkT> ve (29)
For Segment 1:
AU, =0 (30)
% Vz
Wy = nRT,In (vj) = P,ViIn (ﬁ) (31)
Q=W (32)
For Segment 2:
) )
AUv2 - §nR(T2 - Tl) = i(Pc% - Pa‘/l) (33)
Wy =0 (34)

Q2 = AU, (35)



For Segment 3:

AUg =0
\% Vi
W3 = nRTyIn (7;) AN (7;)
Qs =W;
For Segment 4:
) 5)
AU4 = §nR(T1 - TQ) = §(Pa‘/l — Pc‘/Q)
Wy,=0
Qs = AU,

(b) From the definition of efficiency,

Wi+ W
€ = m
PViln (%) + PValn (%)
Vi () + 4RV - R

(c) Since the Carnot engine is the most efficient engine, and our engine is not the Carnot

engine, our engine must be less efficient than the Carnot engine.

(d) Switching to a monatomic gas amounts to changing the g in the denominator of € to

3 . . . . .
5. Keeping everything else constant, this would increase the efficiency.

Problem 5

(a) For an adiabatic process, Q = 0, so first law tells us that
dU = —PdV = nCydT
or

PdV 4+ nCydT =0

(45)

(46)

Where we have used the expression dU = nC\ydT’, which holds for an ideal gas. Next,
from the ideal gas law, we take a variation of all variables (but fixed particle number)

to obtain

PdV +VdP = nRdT

(47)



plugging this definition of nRdT into our equation from the first law, we get

0= nCy (PdV—l— VdP
nRk
= (Cy + R)PdV + CyVdP
= CpPdV + CydP
dP dv

ARAE

>+PdV

where we have used Cp = Cy + R. Integrating, we have
Py vy
In|=)=h{—=
" (P 1) " (W)

P Vl'Y — P2V2’Y

exponentiating both sides,

(b) We replace the process in the diagram with an isothermal process so that

dQ dU+dW _ PdV  nRdV

s =

T T T V

integrating , we find

Vi
AS=nRln | —
S =nR n(v)

a

(54)

(55)



