EXAMINATION 2

Chemistry 3A

Name:__Key
SID \#: \qquad
Print first name before second!
Use capital letters!
GSI (if you are taking Chem 3AL): \qquad
Peter Vollhardt
March 29, 2016

Please provide the following information if applicable.

Making up an I Grade
If you are, please indicate the semester during which you took previous Chem 3A and the instructor:

Semester
Instructor

Auditor \qquad

Please write the answer you wish to be graded in the boxed spaces provided.
Do scratch work on the back of the pages. This test should have 13 numbered pages. Check to make sure that you have received a complete exam. A good piece of advice: Read carefully over the questions (at least twice); make sure that you understand exactly what is being asked; avoid sloppy structures or phrases. It is better to be pedantic in accuracy now than sorry later! Good Luck!
I. [30 Points] Name or draw, as appropriate, the following molecules according to the IUPAC rules. Indicate stereochemistry where necessary (cis, trans, R, S, or dashed/wedged lines).
a.
(S)-2-Bromo-1-iodo-3-methylbutane

b.

(S)-2,2-Dimethylcyclohexanol

d.
(1R,4R)-1-Fluoro-4-methylcyclooctane
(R)-2-Chloro-2-fluoro-1-butanol

e.

II. [60 Points] Add the missing starting materials, reagents, or products (aqueous work-up is assumed where necessary). Don't forget stereochemistry! Complete the stencils, when provided.
a.

Hint: One or more products?
b.

c.

Pure enantiomer

For the following questions, circle your choice of an answer:

Is the product chiral?
Is the product optically active?

Yes No

Yes No
d.

For the following questions, circle your choice of an answer:
Is the product chiral?

e.

f.

$\xrightarrow{2 .}$

An iodoalkane
g.

Pure enantiomer

For the following question, circle your choice of an answer:
Is the product optically active? Yes No
III. [50 Points] The following reactions proceed (predominantly) by $\mathrm{S}_{\mathrm{N}} 2, \mathrm{~S}_{\mathrm{N}} 1$, E2, or E1 pathways, respectively. Give the major product(s) in each case and answer the questions by circling the most applicable statement.
a.

Mechanism:
$S_{N} 2$
$\mathrm{S}_{\mathrm{N}} 1$
E2
E1

At lower temperatures, which one of the following ratios will increase:
$S_{N} 2 / S_{N} 1$
$\mathrm{S}_{\mathrm{N}} 1 / \mathrm{E} 1$
E2 / E1
$\mathrm{S}_{\mathrm{N}} 2 / \mathrm{E} 2$
b.

Use Fischer stencils

Mechanism:
$S_{N} 2$
$S_{N} 1$
E2
E1

When using NaOCH_{3} instead of NaSCH_{3}, which one of the following ratios will increase:
c.

Mechanism:

$S_{N} 1$
E2
E1

When using $\mathrm{NaOC}\left(\mathrm{CH}_{3}\right)_{3}$ instead of $\mathrm{NaOCH}_{2} \mathrm{CH}_{3}$, one of the following ratios will increase:

$$
S_{N} 2 / S_{N} 1
$$

$\mathrm{S}_{\mathrm{N}} 1 / \mathrm{E} 1$
El / ER
ER / $\mathrm{S}_{\mathrm{N}} 2$
d. Consider the reaction of \mathbf{A} with a negatively charged nucleophile/base in methanol.

A
Circle your answer -"yes" or "no"- to the following statements:
The rate of E 1 will increase along the series $\mathrm{L}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$.

The rate of E 2 will increase along the series $\mathrm{L}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$.
IV. [40 Points] Suggest four different syntheses of 2-methyl-2-hexanol B. Each scheme should start with the compound given in the respective box. In addition, you can use any other reagents. You do not need to include aqueous work-up steps.

B
a.

b.

c.

d.

V. [30 Points] Outline a synthetic sequence that leads to hydrocarbon E using C and D as the sources of the carbon atoms in the product. Hint: work backwards (retrosynthetically), on the back of the preceding page.

VI. [20 Points] Give all possible products of the monofluorination (with F_{2}; remember: nonselective) of the enantiomer of 1,2-difluoro-3-methylcyclopropane shown below. You will lose points if you depict redundant structures. Complete the stencils provided (including H atoms). Caution: There may be more stencils drawn than you will need. To avoid ambiguity, do not use any extra stencils for practice, but do so on the back of the preceding page.

(1R,2R)-1,2-Difluoro-3-methylcyclopropane
Reaction at CH_{3}

Reaction at C1

Reaction at C2

Circle your answer to the following question. Are the products of reaction at C1 and C2:
Identical Enantiomers Diastereomers?

Reaction at C3

Note: This is identical to

VI. [20 Points]
a. In each pair of acids shown below, circle the stronger one (in $\mathrm{H}_{2} \mathrm{O}$).

b. Place an \boldsymbol{X} mark in the box preceding the most accurate statement. Only one answer is allowed.

The basicity of the anions $\mathrm{CH}_{3}{ }^{-}, \mathrm{NH}_{2}^{-}, \mathrm{OH}^{-}$, and F^{-}decreases from left to right in the periodic table, because
 the atoms that are being protonated get heavier

X
the atoms that are being protonated get more electronegative
\square the atoms that are being protonated become more polarized
\square solvation is impeded by protic solvents

A compound with two asymmetric carbon centers bearing the same substituents (such as 2,3-dibromobutane) can exist as
\square 4 diastereomers
\square 8 stereoisomers

X
Two enantiomers and an achiral meso diastereomer
\square Only the R, R - and S, S-stereoisomers

Nucleophilicity of anions in $\mathrm{CH}_{3} \mathrm{OH}$ increases from top to bottom in a column of the periodic table, because

X they become increasingly less solvated
\square their polarizability decreases
\square they are increasingly sterically hindered
\square their basicity increases

* The End *

