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Physics 7B Fall 2015 Midterm 1 Solutions

Problem 1

Let Rh be the radius of the hole.

∆Rh =
2

3
Rα∆T ⇒ Rh =

2

3
R+∆Rh =

2

3
R(1 + α∆T )

(4 points)

In order for the marble to fit through the hole, Rh ≥ R. (2 points)

Therefore, we want

2

3
R(1 + α∆T ) ≥ R ⇒ 1 + α∆T ≥

3

2
⇒ ∆T ≥

1

2α
.

Therefore, in order for the marble to fit through the hole, oone must increase the steel temperature

by at least 1

2α
. (4 points)
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Physics 7B Fall 2015 Midterm 1 Solutions

Problem 2

Let M be the mass of ice that melts. Then Q = ML. (2 points)

The heat transfered is equal to the kinetic energy of the bullet plus the heat conducted due to the

difference in temperature (2 points).

The kinetic energy of the bullet is equal to mv
2

2
(2 points)

The heat transfered is due to the temperature gradient is equal to mcB(TB − 0◦C). (2 points)

Thus

mv2

2
+mcB(TB − 0◦C) = ML ⇒ M =

mv2

2L
+

mcB

L
(TB − 0◦C)

(2 points)
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……………………………………………. 20 pts 

……………………………………………. 10 pts 

……………………………………………. 10 pts 

……………………………………………. 20 pts 

Problem 4 

Solution 

During a particular interval, heat in the amount of Q must be extracted from the house to 

maintain its temperature. 

During the same interval, Qଵ must be extracted to accomplish the required cooling. We can 

regard Hot water tank AƻE E

A and surrounding as a heat engine, and if it is an ideal heat engine 

ܹ௧ =  
ܶௐ െ  ௌܶ௪ܶ  Qଵ 

We can regard House AƻCE

A and surrounding as a refrigerator and the work from the engine is 

used to cool the house. 

ܹ௧ =  
ௌܶ െ  ுܶுܶ  Q 

We can find that the minimum Qଵ is determined by  

 Qଵ =  
ܶௐܶு ௌܶ െ  ுܶ௪ܶ െ  ௌܶ  Q 

 

 



Physics 7B Fall 2015 Problem 5 Solution Midterm I (Lanzara)

(a) States 1 and 2 are at the same temperature T , so they lie on a common isotherm. The simplest

thermal process from 1 to 2 would be an isothermal process. The diagram for this process is

shown below.

Figure 1: PV Diagram for Isothermal Process

Assume this process is done reversibly. Then the entropy change is

∆S =

∫

P

dQ

T
(1)

where P is the isothermal process. For an isothermal process, the change in temperature is

∆T = 0, which implies that the change in internal energy of the gas is ∆E = 0. Thus, the first

law tells us

∆E = Q−W = 0 ⇒ Q = W.

In differential form, this becomes dQ = dW = PdV . So the change in entropy is

∆S =

∫

P

PdV

T

=

∫

P

nR

V
dV

= nR

∫ V2

V1

dV

V

= R ln

(

V2

V1

)

,

where we have used the ideal gas law to write
P

T
=

nR

V
and noted that n = 1 as stated in the

problem.
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Physics 7B Fall 2015 Problem 5 Solution Midterm I (Lanzara)

(b) The new PV diagram is shown in the diagram below. Note that the pressure and volume for

point 0 = (P0, V0) satisfies P0 = P2 and V0 = V1.

Figure 2: PV Diagram for Two-Step Process

We wish to calculate the entropy changes ∆S1→0 and ∆S0→2. The first, an isovolumetric process,

satisfies W =
∫

pdV = 0, because there is no change in volume. Thus, the first law gives us

∆E = Q−W = Q ⇒ dE = dQ

But note that the energy of an ideal gas satisfies

E =
d

2
nRT ⇒ dE =

d

2
nRdT

where d is the number of degrees of freedom for the gas. Thus, the change in entropy is

∆S1→0 =

∫

1→0

dQ

T

=

∫

1→0

dE

T

=
d

2
nR

∫ T0

T1

dT

T

=
d

2
R ln

(

T0

T1

)

=
d

2
R ln

(

T0

T

)

,

once again noting that n = 1.

2



Physics 7B Fall 2015 Problem 5 Solution Midterm I (Lanzara)

The second entropy change ∆S0→2 occurs during an isobaric process. In this case, we have

according to the first law

dQ = dE + dW =
d

2
nRdT + PdV

So the entropy change is

∆S0→2 =

∫

0→2

d
2
nRdT + PdV

T

=
d

2
nR

∫

0→2

dT

T
+

∫

0→2

PdV

T

=
d

2
nR

∫ T2

T0

dT

T
+ nR

∫ V2

V0

dV

V

=
d

2
nR ln

(

T2

T0

)

+ nR ln

(

V2

V0

)

,

where we have once again used the ideal gas law to write
P

T
=

nR

V
. Note that V0 = V1 (the first

process was isovolumetric) and T2 = T , so this becomes

∆S0→2 =
d

2
R ln

(

T

T0

)

+R ln

(

V2

V1

)

.

Note that ∆S1→0 +∆S0→2 = ∆Sisothermal, which is what we expect.

(c) We have

∆S1→3 =

∫

1→3

dQ

T

= 0,

because for an adiabatic process dQ = 0.

(d) While free expansion is an adiabatic process, it is not reversible, so we cannot apply the normal

formula ∆S =
∫

dQ
T

and claim ∆S = 0 because dQ = 0. Instead, we must find some reversible

process that carries us from state 1 to 2. Because entropy is a state variable, only the initial and

final states are relevant to the change in entropy.

In part (a), we gave a reversible, isothermal process that carried us from state 1 to 2. We

calculated ∆S for that process, hence

∆Sfree = ∆Sisothermal = R ln

(

V2

V1

)

.
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Physics 7B Fall 2015 Problem 5 Solution Midterm I (Lanzara)

(a) 5 points total;

– 1 point for the identification of the correct thermal process;

– 1 point for a correct PV diagram;

– 1 point for setting up entropy integral;

– 1 point for noting that dQ = dW ;

– 1 point for correct answer.

(b) 5 points total;

– 1 point for a correct PV diagram;

– 1 point for setting up first integral correctly (noting that dE = dQ);

– 1 point for correct answer for ∆S1→0;

– 1 point for setting up second integral correctly (noting that dQ = dE + PdV );

– 1 point for correct answer for ∆S0→1.

(c) 5 points total;

– 1 point for some statement implying that dQ = 0 or no heat exchange;

– 1 point for setting up the entropy integral;

– 3 points for observing that dQ = 0 implies ∆S = 0;

(d) 5 points total;

– 1 point for some acknowledgment that the entropy integral fails or some statement that

the process is irreversible;

– 2 points for some set-up of an alternate, reversible pathway OR some set-up of S =

kB log Ω;

– 2 points for the correct answer.
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Problem 6 (Solution)

Two moles of an ideal gas with molar specific heat cv = 5/2R are initially at temperature
T0 and pressure P0. Vibrational degrees of freedom can be neglected in this temperature
range.

1. (3pts) How many degrees of freedom does the gas have? Explain your answer.

Recall the average internal energy for n moles of gas is given by:

E =
d

2
nRT

where d is the number of degrees of freedom for the gas under consideration. The
molar heat capacity at constant volume is defined as:

cv =
1

n

(

∂Q

∂T

)

v

Now at constant volume, the first law of thermodynamics, dE = dQ − dW reduces
to dE = dQ as no work can be done when dV = 0. Thus we may write:

cv =
1

n

(

∂E

∂T

)

v

Plugging in E = d
2
nRT we see:

cv =
d

2
R

Comparing this result to the cv given in the problem, we immediately see d = 5 and
conclude this gas has 5 degrees of freedom.

2. (2pts) Could this be a monatomic gas? Explain you answer.

No, a monatomic gas can have at most 3 quadratic degrees of freedom, namely
vx, vy, vz. While it is possible to limit these degrees (ex. confine the gas to a two
dimensional plane), it is impossible to add degrees of freedom.

3. (5pts) Determine the change in internal energy, the temperature change and the work
done by the gas when heat Q is added to the gas at constant pressure

There is no doubt many ways to arrive at the correct solution, I present only one
here. Begin by computing the change in temperature as follows:

cp =
1

n

(

∂Q

∂T

)

p

⇒ ∆T =
Q

ncp
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now recall for an ideal gas, cp = cv + R. Thus in this particular case (with cv =
5/2R ⇒ cp = 7/2R) we have:

∆T =
2Q

7nR
⇒

Q

7R

The change in internal energy is then:

∆E =
5

2
nR∆T ⇒

5

7
Q

Finally, from the first law, we can compute the work.

W = Q−∆E ⇒
2

7
Q
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Problem 6 (Rubric)

1. (a) 1 pt for writing down a correct definition of molar specific heat

(b) 1 pt for applying 1st law and recognizing dW = 0

(c) 1 pt for correct result

2. (a) 1 pt correct answer

(b) 1 pt for identifying it is because monatomic gas cannot have more than 3 degrees
of freedom

3. (a) 3 pts for giving valid expressions for ∆T,∆E, andW when Q is added at constant
pressure, even if expressions involve variable not explicitly given in the problem.

(b) 2 pts will additionally be awarded if the expressions are in terms of given vari-
ables.
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