Physics 7C, Spring 2014 Instructor: Professor Adrian Lee

Midterm Examination, Tuesday, February 25, 2014
Please do work in your blue/greenbooks. Show your reasoning carefully so that we can be sure that you derived the answer rather than guessing it or relying on memory; in addition, this enables us to give partial credit. You may use one double-sided 3.5×5 index cards of notes. You can use a simple calculator (no smart phones or devices that can store notes). Test duration is 110 minutes.

1 Qualitative Questions [30 pts. total]

Only a few lines of explanation is needed for these. You don't have to use cartoons or equations, unless specified, but you can. No derivations are needed.
a) If you have a bare optical fiber made of glass $(n=1.2)$, can you get total internal reflection with the fiber in water $(\mathrm{n}=1.33)$? [5 pts.]
b) If a concave spherical mirror produces a real image, can it be upright only, inverted only, or both compared to the original object? You probably need ray diagram(s) for this question. [5 pts.]
c) For an electric field $E=E_{0} \sin (k x-\omega t) \hat{y}$ what is its velocity include the correct sign? [5pts.]
d) If you reverse a lens (flip it around the vertical), does it act the same and have the same focal length? [5 pts]

2 Reimaging System [30 pts. total]

A small arrow is a distance d_{1} from a diverging lens as shown in the figure. A converging lens with a focal length f_{c} is a distance d_{2} to the right of the diverging lens with a focal length f_{d}. The two lens system forms a real inverted image a distance d_{3} to the right of the converging lens. You should assume that $d_{2}>f_{c}, d_{2}>f_{d}$ and $d_{2}>\left|f_{c}\right|+\left|f_{d}\right|$.
a) Draw a ray diagram [10 pts.]
b) Find an expression for the focal length of the diverging lens f_{d} in terms of d_{1}, d_{2}, d_{3} and f_{c}. [10 pts.]
c) What is the magnification of the optical system? You can use any of the variables in the problem f_{d}, f_{c}, d_{1}, d_{2} and $d_{3}[10 \mathrm{pts}$.]

3 Space Telescope [30 pts. total]

A telescope for space observations consists of two spherical mirrors arranged as shown in the figure. The large primary and small secondary mirrors have radii equal to R and r respectively. The distance between the mirrors is D and $D<R / 2$. You can also assume that the secondary mirror is positioned such that the final image is formed as shown in the figure. This telescope design is called a "Maksutov Cassegrain."
a) Make a ray diagram showing where the final image is for an object at $d_{o}=$ infinity. Is the image of the primary real or virtual? Is the object for the secondary real or virtual? [15 pts .]
b) What is the distance from the primary mirror to the final image? [15 pts .]

4 Solar Sail [30 pts. total]

A small perfectly reflecting sail of area A is a distance D away from the sun, with $A \ll D^{2}$. The amount of energy absorbed by the sail during a time interval T is measured to be $U_{a b s}$. In terms of these quantities, please answer the following:
a) What is the amplitude of the electric field incident on the sail coming from the sun, E_{0} ? [10 pts.]
b) What is the power output of the sun, assuming it radiates uniformly in all directions? [10 pts.]
c) In some coordinate system, the electric field incident on the sail can be written $E_{\text {in }}=E_{0} \sin (k x-\omega t) \hat{y}$. Write the magnetic field in terms of these quantities. [10 pts.]
d) In this same coordinate system, what possible directions could the electric field have been pointing if it was not pointing in the \hat{y} direction? The propagation direction can not change. Possibilities include the \hat{x} and/or \hat{z} directions. [5 pts.]
e) Could the electric field be written $E_{i n}=E_{0} \sin \left(k x-\omega t^{2}\right) y$? [5 pts.]

