EECS C128/ ME C134 Final Fri. Dec. 18, 2015 1910-2200 pm

Name:	
SID	

- Closed book. One page, 2 sides of formula sheets. No calculators.
- There are 6 problems worth 100 points total.

Problem	Points	Score
1	15	
2	16	
3	18	
4	20	
5	16	
6	15	
Total	100	

In the real world, unethical actions by engineers can cost money, careers, and lives. The penalty for unethical actions on this exam will be a grade of 'F' and a letter will be written for your file and to the Office of Student Conduct.

$\tan^{-1}\frac{1}{10} = 5.7^{\circ}$	$\tan^{-1}\frac{1}{5} = 11.3^{\circ}$
$\tan^{-1}\frac{1}{4} = 14^{\circ}$	$\tan^{-1}\frac{1}{3} = 18.4^{\circ}$
$\tan^{-1}\frac{1}{2} = 26.6^{\circ}$	$\tan^{-1}\frac{1}{\sqrt{3}} = 30^{\circ}$
$\tan^{-1} 1 = 45^{\circ}$	$\tan^{-1}\sqrt{3} = 60^{\circ}$
$\sin 30^\circ = \frac{1}{2}$	$\cos 30^\circ = \frac{\sqrt{3}}{2}$

$20\log_{10}1 = 0dB$	$20\log_{10} 2 = 6dB$	$\pi \approx 3.14$
$20\log_{10}\sqrt{2} = 3dB$	$20\log_{10}\frac{1}{2} = -6dB$	$2\pi \approx 6.28$
$20\log_{10} 5 = 20db - 6dB = 14dB$	$20\log_{10}\sqrt{10} = 10 \text{ dB}$	$\pi/2 \approx 1.57$
$1/e \approx 0.37$	$\sqrt{10} \approx 3.164$	$\pi/4 \approx 0.79$
$1/e^2 \approx 0.14$	$\sqrt{2} \approx 1.41$	$\sqrt{3} \approx 1.73$
$1/e^3 \approx 0.05$	$1/\sqrt{2} \approx 0.71$	$1/\sqrt{3} \approx 0.58$

Problem 1 (15 pts)

You are given the open-loop plant:

$$G(s) = \frac{5(s+5)(s+3)}{(s+1)(s^2+4s+104)}.$$

For the above system, the partial root locus is shown for 5 different controller/plant combinations, G(s), $D_2(s)G(s)$, ..., $D_5(s)G(s)$. (Note: the root locus shows open-loop pole locations for D(s)G(s), and closed-loop poles for $\frac{DG}{1+DG}$ are at end points of branches).

[5 pts] a) For each set of open-loop poles and zeros given above, choose the best corresponding open-loop Bode plot V,W,X,Y, or Z from the next page:

- (i) G(s): Bode Plot Y
- (ii) $D_2(s)G(s)$: Bode plot X
- (iii) $D_3(s)G(s)$: Bode plot $\underline{\mathsf{W}}$
- (iv) $D_4(s)G(s)$: Bode Plot \bigvee
- (v) $D_5(s)G(s)$: Bode Plot \mathbb{Z}

Problem 1, cont.

The open-loop Bode plots for 5 different controller/plant combinations, $D_1(s)G(s), ..., D_5(s)G(s)$ are shown below.

[5 pts] b) For the Bode plots above:

- (i) Bode plot V: phase margin $\frac{40}{20}$ (degrees) at $\omega = \frac{11^{\text{rad}}/5}{5}$ Bode plot V: gain margin $\frac{20}{5}$ dB at $\omega = \frac{23}{5}$ and $\omega = \frac{11^{\text{rad}}/5}{5}$ Estimate damping factor $\zeta = \frac{3}{5}$
- (ii) Bode plot Z: phase margin $\underline{\overset{q}{\bigcirc}}$ (degrees) at $\omega = \underline{\overset{100}{\square}}$ Bode plot Z: gain margin $\underline{\overset{\infty}{\square}}$ dB at $\omega = \underline{\overset{\square}{\square}}$

Problem 1, cont.

[5 pts] c) For each closed loop controller/plant with root locus as given in part a), choose the best corresponding closed-loop step response (A-E). (Note: dashed line shows final value.)

- (i) G(s): step response $\underline{\mathbb{E}}$
- (ii) $D_2(s)G(s)$: step response \square
- (iii) $D_3(s)G(s)$: step response A
- (iv) $D_4(s)G(s)$: step response \angle
- (v) $D_5(s)G(s)$: step response $\underline{\mathcal{B}}$

Problem 2 (16 pts)

The open-loop system is given by $G(s) = \frac{400}{(s+2)^2(s^2+2s+101)}$, and Bode plot for G(s) is here:

A lag controller $D(s) = k \frac{s+\alpha}{s+\beta}$ is to be designed such that the unity gain feedback system with openloop transfer function D(s)G(s) has static error constant $K_p = 10$. D(s)G(s) should have a nominal (asymptotic approximation) phase margin $\phi_m \approx 40^\circ$ at $\omega_{pm} = 2$ rad s^{-1} .

[6 pts] a. Determine gain, zero, and pole location for the lag network D(s):

gain
$$k = 1$$

zero:
$$\alpha = 2$$
 pole: $\beta = 2$

pole:
$$\beta = 12$$

[4 pts] b. Sketch the asymptotic Bode plot for the lag network D(s) alone on the plot below: Bode Diagram for lag network, D(s)

Fig. 3.2

[4 pts] c. Sketch the asymptotic Bode plot for the combined lag network and plant D(s)G(s)on the plot (Fig. 3.1) at top of page.

[2 pts] d. Mark the phase margin and phase margin frequency on the plot of D(s)G(s) (Fig. 3.1).

Problem 3 (18 pts)

[2 pt] a. Given the homogeneous linear differential equation $\dot{\mathbf{x}} = A\mathbf{x}$ with initial condition $\mathbf{x}(0) = \mathbf{x}_o$. Show that the solution $\mathbf{x}(t) = e^{At}\mathbf{x}_o$ satisfies both conditions.

$$\frac{1}{4\pi}(x(t)) = Ae^{At}x_0$$

$$= Ax(t)$$

$$= Ax(t)$$

$$= x_0$$
initial condition

[2 pt] b. Show that e^{At} must equal $\mathcal{L}^{-1}[sI-A]^{-1}$. (Hint: see part a. above.)

[2 pts] c. Given
$$\bar{A} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$
, find $e^{\bar{A}t}$

$$e^{\bar{A}t} = \begin{bmatrix} e^{\lambda_1 + 1} & 0 \\ 0 & e^{\lambda_2 + 1} \end{bmatrix}$$

[4 pts] d. Given \bar{A} , A, P such that $\bar{A} = P^{-1}AP$ is diagonal, and given $e^{\bar{A}t}$. Also given the state vector $x = P\bar{x}$. Show how to find e^{At} given \bar{A} , A, P, $e^{\bar{A}t}$, starting from $\dot{\bar{x}} = \bar{A}\bar{x}$. (Leave in general form.)

$$e^{At} = \frac{\rho e^{\overline{A} + \rho^{-1}}}{\overline{X} = \overline{A} \overline{X}}$$

$$\overline{X} = e^{\overline{A} + \overline{X}}$$

$$\overline{X} = e^{\overline{A} + \overline{X}}$$

$$\overline{X} = e^{\overline{A} + \rho^{-1} X_0}$$

$$X = e^{\overline{A} + \rho^{-1} X_0}$$

$$Y = e^{\overline{A} + \rho^{-1} X_0}$$

$$Y = e^{\overline{A} + \rho^{-1} X_0}$$

$$\Rightarrow \rho^{A+} = \rho e^{\overline{A} + \rho^{-1}}$$

Problem 3, cont.

Given the two LTI systems

$$\dot{\mathbf{z}}(t) = A\mathbf{x} + Bu = \begin{bmatrix} -1 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u, \quad y = C\mathbf{x} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\dot{\mathbf{z}}(t) = A_z \mathbf{z} + B_z u = \begin{bmatrix} -3 & 2 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} u, \quad y = C_z \mathbf{z} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$

[4 pts] e. Find a transformation P such that $A = P^{-1}A_zP$ is diagonal. (Hint: this could be found using the controllability matrix for each system.)

$$P = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$$

$$C_{x} = \begin{bmatrix} 1 & -1 \\ 2 & -6 \end{bmatrix}$$

$$C_{z} = \begin{bmatrix} -1 & 5 \\ -1 & -1 \end{bmatrix}$$

$$P = C_{z} C_{x}^{-1}$$

$$C_{x}^{-1} = -\frac{1}{4} \begin{bmatrix} -6 & 1 \\ -2 & 1 \end{bmatrix}$$

$$P = -\frac{1}{4} \begin{bmatrix} -1 & 5 \\ -4 & 0 \end{bmatrix}$$

$$P = -\frac{1}{4} \begin{bmatrix} -4 & 4 \\ -4 & 0 \end{bmatrix}$$

[4 pts] f. Show that both systems have the same input-output behavior. That is, for the same input u(t), the output y(t) will be identical for both systems. Use P from part e, and also verify B_z and C_z are correct.

note
$$z = Px$$
 $y = C_2 Z$
 $y = C_2 Px$
 $z = [0][1][1][1][x][x$

$$z = A_{z}z + B_{z}u$$
 $P_{x} = A_{z}P_{x} + B_{z}u$
 $x = P^{-1}A_{z}P_{x} + P^{-1}B_{z}u$
 $= A_{x} + \frac{1}{2} \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} u$
 $\dot{x} = A_{x} + \frac{1}{2} \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 & 1 \end{bmatrix} u$

$$\rho^{-1} = \frac{1}{2} \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}$$

Problem 4. (20 pts)

Given the LTI system

$$\dot{\mathbf{x}}(t) = A\mathbf{x} + Bu = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \qquad \qquad y = C\mathbf{x} = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x},$$

[3 pts] a. Find $\mathbf{k} = [k_1 \ k_2]$ such that with state feedback $u = r - \mathbf{k}\mathbf{x}$, the closed-loop poles of the system are at λ_1, λ_2 . $\triangle^{\mathbf{k}_{\infty}}(\varsigma) = (\varsigma - \lambda_1)(\varsigma - \lambda_2)$

$$k_1 = \frac{\lambda_1 \lambda_2}{\lambda_2}$$
 $k_2 = \frac{\lambda_1 \lambda_2}{\lambda_2}$

$$\Delta^{U}(s) = (S - \lambda_1)(s - \lambda_2)$$

$$= s^2 - (\lambda_1 + \lambda_2)s + \lambda_1 \lambda_2$$

$$\Delta^{U}(s) = \begin{vmatrix} s & -1 \\ +k_1 & s + k_2 \end{vmatrix}$$

$$= s^2 + k_2 s - k_1$$

[1 pts] b. The initial condition is $\mathbf{x}(0) = [0 \ 0]^T$. For r(t) a unit step input, it is required that $x_1(t) < 1 \ \forall t$, that is over shoot is not allowed.

What is range of λ_1, λ_2 to avoid over shoot?

[3 pts] c. Assume $\mathbf{k} = [k_1 \ k_2] = [4 \ 5]$. Let $e(t) = r(t) - C\mathbf{x}$. For r(t) a unit step input, find the steady state error.

$$\lim_{t\to\infty} e(t) = \frac{3/4}{A_{cl}} \qquad \qquad e_{ss} = \left[+ \left(A_{cl} \right) B \right]$$

$$A_{cl} = \left[-\frac{3}{4} - \frac{3}{5} \right] A_{cl} = \left[-\frac{5}{4} - \frac{3}{5} \right] \left[-\frac{5}{4} - \frac{3}{5} \right]$$

$$e_{ss} = \left[+ \left(1 - \frac{3}{4} \right) A_{cl} - \frac{3}{4} - \frac{3}{4} \right] \left[-\frac{5}{4} - \frac{3}{5} \right]$$

[3 pts] d. For $\mathbf{k} = [k_1 \ k_2] = [4 \ 5]$, with $u = r - \mathbf{k}\mathbf{x}$, find $\frac{Y(s)}{R(s)}$. (Express the transfer function as a ratio of polynomials, not as matrix operations.)

Tratio of polynomials, not as matrix operations.)
$$\frac{Y(s)}{R(s)} = \frac{1}{s^2 + 5s + 4}$$

$$\frac{Y(s)}{R(s)} = \left(\left(sI - A_{cl} \right)^{-1} B \right)$$

$$\left(\left(sI - A_{cl} \right)^{-1} B = \frac{1}{s^2 + 5s + 4}$$

Problem 4, cont. (20 pts)

[4 pts] e. Define $e_w(t)$ to be the error between an input w(t) and output y(t). That is, $e_w(t) = w(t) - y(t)$. We desire to find an input r(w, y) to the state feedback system shown below in part f such that $\lim_{t\to\infty} e_w(t) = 0$ for a step input w(t) of any amplitude.

$$r(w,y) = \frac{k_e \int (w(y) - y(y)) dy}{(w(y) - y(y))}$$

[2 pts] f. Using the controller from part e, expand the block diagram below to include the controller and input w.

[4 pts] g. Assume the overall control system is stable, and refer to the expanded block diagram above. Describe in words why $\lim_{t\to\infty} e_w(t) = 0$ for a step input w(t).

Problem 5. 13 pts

Given the following system model:

$$\dot{\mathbf{x}} = A\mathbf{x} + Bu \ = \ \left[\begin{array}{c} \dot{x}_1 \\ \dot{x}_2 \end{array} \right] = \left[\begin{array}{cc} -k_2 & 1 \\ 0 & -k_1 \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] + \left[\begin{array}{c} 0 \\ 1 \end{array} \right] u(t), \qquad \qquad y = C\mathbf{x} = \begin{bmatrix} 1 & 0 \end{bmatrix} \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right]$$

[2 pts] a. Determine if the system A, B, C is controllable, and restrictions if any on k_1, k_2 for controllability.

$$C = [B \mid AB]$$
 So Completely Controllable
$$= \begin{bmatrix} 0 & 1 \\ 1 & -k_1 \end{bmatrix}$$
 $\forall k_1, k_2 \in \mathbb{R}$

[2 pts] b. Determine if the system A, B, C is observable, and restrictions if any on k_1, k_2 for observability.

$$O = \begin{bmatrix} C \\ CA \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -k_2 & 1 \end{bmatrix}$$
So Completely Observable
$$\forall k_1, k_2 \in \mathbb{R}$$

[2 pts] c. Provide state equations for an observer which takes as inputs u(t), y(t), and provides an estimate of the state $\hat{\mathbf{x}}(t)$.

$$\hat{\hat{X}} = A\hat{x} + Bu + L(y - \hat{y})$$

$$\hat{y} = C\hat{x}$$

[6 pts] d. Given $k_1 = 1, k_2 = 4$, find observer gain L such that the observer has closed loop poles at $s_1 = -10, s_2 = -10$.

Problem 5, cont.

[4 pts] e. Let the error between the estimated state and the true state be given by $\mathbf{e}(t) = \hat{\mathbf{x}} - \mathbf{x}$. Find the dynamics of the error in terms of A, B, C, L.

$$\dot{\mathbf{e}} = (A - LC) \mathbf{e}$$

[4 pts] f. Given initial conditions

$$\mathbf{x} = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}$$
 and $\hat{\mathbf{x}} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Sketch approximately $e_1(t), e_2(t)$ for $t \geq 0$. (Hint: consider dynamics of observer compared to dynamics of plant.)

Given:

Ts = 4/00 = 4/10 = 0.4 sec to 90% settle

(Dynanics of e(+) are independent from plant dynamics by separability)

Problem 6 (8 pts)

[4 pts] a. Given the discrete time system below, find $\mathbf{X}(z)$ the z-transform of $\mathbf{x}(k)$, where $u(k) = (\frac{1}{2})^k$ for $k \ge 0$.

$$\mathbf{x}(k+1) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \mathbf{x}(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k)$$

$$\mathbf{X}(z) = \begin{bmatrix} \frac{1}{2}(z)(z-1/2) \\ \frac{1}{2}(z-1/2) \end{bmatrix} \qquad (355 \text{ whin} g) \quad \chi(0) = 0$$

$$= (z \mathbf{I} - G_1)^{-1} \left(H_1 \right) \left(\frac{Z}{Z-1/2} \right)$$

$$= \begin{bmatrix} \frac{Z}{Z} - 1 \\ 0 & z \end{bmatrix}^{-1} \begin{bmatrix} O \\ \frac{Z}{Z} / (Z-1/2) \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{2}(z)(z-1/2) \\ O & \frac{1}{2} \end{bmatrix} \begin{bmatrix} O \\ \frac{Z}{Z} / (Z-1/2) \end{bmatrix} \Rightarrow \begin{bmatrix} \frac{1}{2}(z)(z-1/2) \\ \frac{1}{2}(z-1/2) \end{bmatrix}$$

[4 pts] b. Given

$$\mathbf{x}(k+1) = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right] \mathbf{x}(k) + \left[\begin{array}{cc} 0 \\ 1 \end{array} \right] u(k)$$

Determine the response of the system to u(k) a unit step input.

$$\chi(k) = \begin{bmatrix} u(k-2) \\ u(k-1) \end{bmatrix}$$

$$\chi(z) = \begin{bmatrix} 1/2 & 1/2^2 \\ 0 & 1/2 \end{bmatrix} \begin{bmatrix} 0 \\ \frac{1}{2}/(z-1) \end{bmatrix} \Rightarrow \begin{bmatrix} (z^{-2})(\frac{1}{2}/(z-1)) \\ (z^{-1})(\frac{1}{2}/(z-1)) \end{bmatrix}$$
Therse z -Transform yields a $1k$ and $2k$ delay on the unit skp...
$$\chi(k) = \begin{bmatrix} u(k-2) \\ u(k-1) \end{bmatrix}$$

[4 pts] c. Given

$$X(z) = \frac{z^2}{(z - \frac{1}{2})(z - 1)}$$

find x(k) for $k \geq 0$.

$$x(k) = \frac{-(1/2)^{\frac{1}{k}} + 2u(k)}{\overline{z}} = \frac{z}{(z - 1/2)(z - 1)} = \frac{A}{(z - 1/2)} + \frac{B}{(z - 1/2)}$$

$$\overline{z} = A(\overline{z} - 1) + B(\overline{z} - 1/2)$$

$$\Rightarrow \overline{z} = 1 : 1 = B(1/2) \Rightarrow B = 2$$

$$\Rightarrow \overline{z} = \frac{1}{2} : 1/2 : 1/2 \Rightarrow A = -1$$

$$x(z) = \frac{-\overline{z}}{(z - 1/2)} + \frac{2\overline{z}}{(\overline{z} - 1)}$$

$$x(k) = -(1/2)^{\frac{1}{k}} + 2u(k)$$

$$12$$

Problem 6, cont.)

$$X(z) = \frac{z}{(z - \frac{1}{2})(z - 1)(z - \frac{2}{5})}$$
find $\lim_{k \to \infty} x(k) = \frac{10/3}{10}$

Final Value Thin: $\lim_{k \to \infty} x(k) = \lim_{k \to \infty} \frac{(\frac{z-1}{2})}{z} \chi_{(z)}$

$$\lim_{k \to \infty} \frac{(\frac{z-1}{2})}{(\frac{z+1}{2})(\frac{z-1}{2})} \chi_{(z)}$$

$$= \lim_{k \to \infty} \frac{(\frac{z-1}{2})}{(\frac{z+1}{2})(\frac{z-1}{2})} \frac{(\frac{z-1}{2})}{(\frac{z-1}{2})(\frac{z-1}{2})}$$

$$= \frac{1}{2} \frac{(\frac{z-1}{2})(\frac{z-1}{2})}{(\frac{z-1}{2})(\frac{z-1}{2})} = \frac{10/3}{2}$$

[4 pts] e. Given a mass m, and input force f, $\ddot{x} = f/m$. Let the state x_1 be the position and x_2 velocity of the mass. The continuous time state equations for the system are:

$$\dot{\mathbf{x}} = A\mathbf{x} + Bf = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} f(t),$$

Find the discrete time equivalent system using zero-order hold for input force f(t) and sampling period $T: \mathbf{x}((k+1)T) = G\mathbf{x}(kT) + Hf(kT)$.

$$G = \begin{bmatrix} 1 & T \\ \hline 0 & 1 \end{bmatrix}$$

$$H = \begin{bmatrix} T^{2}/2m \\ \hline T/m \end{bmatrix}$$

$$H = \begin{bmatrix} (\int_{0}^{T} e^{A\lambda} d\lambda) B \\ (\int_{0}^{T} [1 \lambda] [0] d\lambda$$

$$(\int_{0}^{T} [1 \lambda] [0] d\lambda) B \\ (\int_{0}^{T} [$$