EECS C128/ ME C134
Final
Fri. Dec. 18, 2015
$1910-2200 \mathrm{pm}$
Name:
SID: \qquad

- Closed book. One page, 2 sides of formula sheets. No calculators.
- There are 6 problems worth 100 points total.

Problem	Points	Score
1	15	
2	16	
3	18	
4	20	
5	16	
6	15	
Total	100	

In the real world, unethical actions by engineers can cost money, careers, and lives. The penalty for unethical actions on this exam will be a grade of ' F ' and a letter will be written for your file and to the Office of Student Conduct.

$\tan ^{-1} \frac{1}{10}=5.7^{\circ}$	$\tan ^{-1} \frac{1}{5}=11.3^{\circ}$
$\tan ^{-1} \frac{1}{4}=14^{\circ}$	$\tan ^{-1} \frac{1}{3}=18.4^{\circ}$
$\tan ^{-1} \frac{1}{2}=26.6^{\circ}$	$\tan ^{-1} \frac{1}{\sqrt{3}}=30^{\circ}$
$\tan ^{-1} 1=45^{\circ}$	$\tan ^{-1} \sqrt{3}=60^{\circ}$
$\sin 30^{\circ}=\frac{1}{2}$	$\cos 30^{\circ}=\frac{\sqrt{3}}{2}$

$20 \log _{10} 1=0 d B$	$20 \log _{10} 2=6 d B$	$\pi \approx 3.14$
$20 \log _{10} \sqrt{2}=3 d B$	$20 \log _{10} \frac{1}{2}=-6 d B$	$2 \pi \approx 6.28$
$20 \log _{10} 5=20 d b-6 d B=14 d B$	$20 \log _{10} \sqrt{10}=10 \mathrm{~dB}$	$\pi / 2 \approx 1.57$
$1 / e \approx 0.37$	$\sqrt{10} \approx 3.164$	$\pi / 4 \approx 0.79$
$1 / e^{2} \approx 0.14$	$\sqrt{2} \approx 1.41$	$\sqrt{3} \approx 1.73$
$1 / e^{3} \approx 0.05$	$1 / \sqrt{2} \approx 0.71$	$1 / \sqrt{3} \approx 0.58$

Problem 1 (15 pts)

You are given the open-loop plant:

$$
G(s)=\frac{5(s+5)(s+3)}{(s+1)\left(s^{2}+4 s+104\right)} .
$$

For the above system, the partial root locus is shown for 5 different controller/plant combinations, $G(s), D_{2}(s) G(s), \ldots, D_{5}(s) G(s)$. (Note: the root locus shows open-loop pole locations for $D(s) G(s)$, and closed-loop poles for $\frac{D G}{1+D G}$ are at end points of branches).

[5 pts] a) For each set of open-loop poles and zeros given above, choose the best corresponding open-loop Bode plot $\mathrm{V}, \mathrm{W}, \mathrm{X}, \mathrm{Y}$, or Z from the next page:
(i) $G(s)$: Bode Plot \qquad
(ii) $D_{2}(s) G(s)$: Bode plot \qquad
(iii) $D_{3}(s) G(s)$: Bode plot \qquad
(iv) $D_{4}(s) G(s)$: Bode Plot \qquad
(v) $D_{5}(s) G(s)$: Bode Plot \qquad

Problem 1, cont.
The open-loop Bode plots for 5 different controller/plant combinations, $D_{1}(s) G(s), \ldots, D_{5}(s) G(s)$ are shown below.

Bode W

Bode Plot Y

[5 pts] b) For the Bode plots above:
(i) Bode plot V: phase margin \qquad (degrees) at $\omega=$ \qquad
Bode plot V: gain margin \qquad dB at $\omega=$ \qquad
Estimate damping factor $\zeta=$ \qquad
(ii) Bode plot Z: phase margin \qquad (degrees) at $\omega=$ \qquad Bode plot Z: gain margin \qquad dB at $\omega=$ \qquad

Problem 1, cont.
[5 pts] c) For each closed loop controller/plant with root locus as given in part a), choose the best corresponding closed-loop step response (A-E). (Note: dashed line shows final value.)
(i) $G(s)$: step response \qquad
(ii) $D_{2}(s) G(s)$: step response \qquad
(iii) $D_{3}(s) G(s)$: step response \qquad
(iv) $D_{4}(s) G(s)$: step response \qquad
(v) $D_{5}(s) G(s)$: step response \qquad

Step A

Step C

Step B

Problem 2 (16 pts)
The open-loop system is given by $G(s)=\frac{400}{(s+2)^{2}\left(s^{2}+2 s+101\right)}$, and Bode plot for $G(s)$ is here:

Fig. 3.1
A lag controller $D(s)=k \frac{s+\alpha}{s+\beta}$ is to be designed such that the unity gain feedback system with openloop transfer function $D(s) G(s)$ has static error constant $K_{p}=10 . D(s) G(s)$ should have a nominal (asymptotic approximation) phase margin $\phi_{m} \approx 40^{\circ}$ at $\omega_{p m}=2 \mathrm{rad} \mathrm{s}^{-1}$.
[6 pts] a. Determine gain, zero, and pole location for the lag network $D(s)$:
gain $k=$ \qquad zero: $\alpha=$ \qquad pole: $\beta=$ \qquad
[4 pts] b. Sketch the asymptotic Bode plot for the lag network $D(s)$ alone on the plot below:

Fig. 3.2
[4 pts] c. Sketch the asymptotic Bode plot for the combined lag network and plant $D(s) G(s)$ on the plot (Fig. 3.1) at top of page.
[2 pts] d. Mark the phase margin and phase margin frequency on the plot of $D(s) G(s)$ (Fig. 3.1).

Problem 3 (18 pts)

[2 pt] a. Given the homogeneous linear differential equation $\dot{\mathbf{x}}=A \mathbf{x}$ with initial condition $\mathbf{x}(0)=\mathbf{x}_{o}$. Show that the solution $\mathbf{x}(t)=e^{A t} \mathbf{x}_{o}$ satisfies both conditions.
[2 pt] b. Show that $e^{A t}$ must equal $\mathcal{L}^{-1}[s I-A]^{-1}$. (Hint: see part a. above.)
$[2 \mathrm{pts}]$ c. Given $\bar{A}=\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]$, find $e^{\bar{A} t}$

[4 pts] d. Given \bar{A}, A, P such that $\bar{A}=P^{-1} A P$ is diagonal, and given $e^{\bar{A} t}$. Also given the state vector $x=P \bar{x}$. Show how to find $e^{A t}$ given $\bar{A}, A, P, e^{\bar{A} t}$, starting from $\dot{\bar{x}}=\bar{A} \bar{x}$. (Leave in general form.)

$$
e^{A t}=
$$

Problem 3, cont.

Given the two LTI systems

$$
\begin{gathered}
\dot{\mathbf{x}}(t)=A \mathbf{x}+B u=\left[\begin{array}{cc}
-1 & 0 \\
0 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
2
\end{array}\right] u, \quad y=C \mathbf{x}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
\dot{\mathbf{z}}(t)=A_{z} \mathbf{z}+B_{z} u=\left[\begin{array}{cc}
-3 & 2 \\
0 & -1
\end{array}\right]\left[\begin{array}{c}
z_{1} \\
z_{2}
\end{array}\right]+\left[\begin{array}{c}
-1 \\
1
\end{array}\right] u, \quad y=C_{z} \mathbf{z}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]
\end{gathered}
$$

[4 pts] e. Find a transformation P such that $A=P^{-1} A_{z} P$ is diagonal. (Hint: this could be found using the controllability matrix for each system.)

[4 pts] f. Show that both systems have the same input-output behavior. That is, for the same input $u(t)$, the output $y(t)$ will be identical for both systems. Use P from part e, and also verify B_{z} and C_{z} are correct.

Problem 4. (20 pts)

Given the LTI system

$$
\dot{\mathbf{x}}(t)=A \mathbf{x}+B u=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t) \quad y=C \mathbf{x}=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \mathbf{x},
$$

[3 pts] a. Find $\mathbf{k}=\left[\begin{array}{ll}k_{1} & k_{2}\end{array}\right]$ such that with state feedback $u=r-\mathbf{k x}$, the closed-loop poles of the system are at λ_{1}, λ_{2}.

$$
k_{1}=\quad k_{2}=
$$

[1 pts] b. The initial condition is $\mathbf{x}(0)=\left[\begin{array}{ll}0 & 0\end{array}\right]^{T}$. For $r(t)$ a unit step input, it is required that $x_{1}(t)<1 \forall t$, that is over shoot is not allowed.

What is range of λ_{1}, λ_{2} to avoid over shoot?
[3 pts $]$ c. Assume $\mathbf{k}=\left[\begin{array}{ll}k_{1} & k_{2}\end{array}\right]=\left[\begin{array}{ll}4 & 5\end{array}\right]$. Let $e(t)=r(t)-C \mathbf{x}$. For $r(t)$ a unit step input, find the steady state error.

$$
\lim _{t \rightarrow \infty} e(t)=
$$

\qquad
[3 pts] d. For $\mathbf{k}=\left[\begin{array}{ll}k_{1} & k_{2}\end{array}\right]=\left[\begin{array}{ll}4 & 5\end{array}\right]$, with $u=r-\mathbf{k x}$, find $\frac{Y(s)}{R(s)}$. (Express the transfer function as a ratio of polynomials, not as matrix operations.)
$\frac{Y(s)}{R(s)}=$ \qquad

Problem 4, cont. (20 pts)
[4 pts] e. Define $e_{w}(t)$ to be the error between an input $w(t)$ and output $y(t)$. That is, $e_{w}(t)=w(t)-y(t)$. We desire to find an input $r(w, y)$ to the state feedback system shown below in part f such that $\lim _{t \rightarrow \infty} e_{w}(t)=0$ for a step input $w(t)$ of any amplitude.

$$
r(w, y)=
$$

\qquad
[2 pts] f. Using the controller from part e, expand the block diagram below to include the controller and input w.

[4 pts] g. Assume the overall control system is stable, and refer to the expanded block diagram above. Describe in words why $\lim _{t \rightarrow \infty} e_{w}(t)=0$ for a step input $w(t)$.

Problem 5. 16 pts
Given the following system model:
$\dot{\mathbf{x}}=A \mathbf{x}+B u=\left[\begin{array}{l}\dot{x}_{1} \\ \dot{x}_{2}\end{array}\right]=\left[\begin{array}{cc}-k_{2} & 1 \\ 0 & -k_{1}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+\left[\begin{array}{l}0 \\ 1\end{array}\right] u(t), \quad y=C \mathbf{x}=\left[\begin{array}{ll}1 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
[2 pts] a. Determine if the system A, B, C is controllable, and restrictions if any on k_{1}, k_{2} for controllability.
[2 pts] b. Determine if the system A, B, C is observable, and restrictions if any on k_{1}, k_{2} for observability.
[2 pts] c. Provide state equations for an observer which takes as inputs $u(t), y(t)$, and provides an estimate of the state $\hat{\mathbf{x}}(t)$.
[6 pts] d. Given $k_{1}=1, k_{2}=4$, find observer gain L such that the observer has closed loop poles at $s_{1}=-10, s_{2}=-10$.

$$
L=\left[\begin{array}{l}
l_{1} \\
l_{2}
\end{array}\right]=\left[\begin{array}{l}
\quad
\end{array}\right]
$$

Problem 5, cont.

[2 pts] e. Let the error between the estimated state and the true state be given by $\mathbf{e}(t)=\mathbf{x}-\hat{\mathbf{x}}$. Find the dynamics of the error in terms of A, B, C, L.
$\dot{\mathrm{e}}=$ \qquad
[2 pts] f. Given initial conditions

$$
\mathbf{x}=\left[\begin{array}{c}
1 \\
0.5
\end{array}\right] \quad \text { and } \quad \hat{\mathbf{x}}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

and observer has closed loop poles at $s_{1}=-10, s_{2}=-10$, and $k_{1}=1, k_{2}=4$. Sketch approximately $e_{1}(t), e_{2}(t)$ for $t \geq 0$. (Hint: consider dynamics of observer compared to dynamics of plant.)

Problem 6 (15 pts)
[3 pts] a. Given the discrete time system below, find $\mathbf{X}(z)$ the z-transform of $\mathbf{x}(k)$, where $u(k)=\left(\frac{1}{2}\right)^{k}$ for $k \geq 0$. (Assume $\mathbf{x}(0)=\mathbf{0}$.)

$$
\mathbf{x}(k+1)=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \mathbf{x}(k)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(k)
$$

$$
\mathbf{X}(z)=[\square
$$

[2 pts] b. Given

$$
\mathbf{x}(k+1)=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \mathbf{x}(k)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(k)
$$

Determine the response of the system to $u(k)$ a unit step input. (Assume $\mathbf{x}(0)=\mathbf{0}$.)

$$
\mathbf{x}(k)=[
$$

[4 pts] c. Given

$$
X(z)=\frac{z^{2}}{\left(z-\frac{1}{2}\right)(z-1)}
$$

find $x(k)$ for $k \geq 0$.

$$
x(k)=
$$

Problem 6, cont.
[2 pts] d. Given

$$
X(z)=\frac{z}{\left(z-\frac{1}{2}\right)(z-1)\left(z-\frac{2}{5}\right)}
$$

find $\lim _{k \rightarrow \infty} x(k)=$ \qquad
[4 pts] e. Given a mass m, and input force $f, \ddot{x}=f / m$. Let the state x_{1} be the position and x_{2} velocity of the mass. The continuous time state equations for the system are :

$$
\dot{\mathbf{x}}=A \mathbf{x}+B f=\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{1}{m}
\end{array}\right] f(t)
$$

Find the discrete time equivalent system using zero-order hold for input force $f(t)$ and sampling period $T: \mathbf{x}((k+1) T)=G \mathbf{x}(k T)+H f(k T)$.

$$
G=\left[\begin{array}{l|l}
& \\
\hline &
\end{array}\right]
$$

$$
H=[\square
$$

Blank page for scratch work.

