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Chemical	Engineering	150A	
Midterm	Exam	–	2	–	Solutions	
Wednesday,	April	5,	2017		

7:10	pm	–	8:00	pm	
	

The	exam	is	100	points	total.	
	
	

Name:	_________________________________	(in	Uppercase)	
	
Student	ID:	_____________________________	
	
You	are	allowed	one	8.5”×11”	sheet	of	paper	with	your	notes	on	both	sides.	
	
The	exam	should	have	14	pages	(front	and	back)	including	the	cover	page.	
	

Instructions:	
1)	Do	your	calculations	in	the	space	provided	for	the	corresponding	part.	Any	
work	done	outside	of	specified	area	(including	scratch	sheet)	will	not	be	
graded.	

3)	Please	sign	below	saying	that	you	agree	to	the	UC	Berkeley	honor	code.	
4)	The	exam	contains	two	problems.	
5)	Use	the	last	two	pages	as	scratch	sheet	if	you	would	like	to.	
6)	Exam	should	be	turned	in	SHARP	8:00	PM.		
7)	Navier-Stokes,	continuity,	and	Newtonian	viscosity	equations	are	provided	
starting	on	page	12.	

	
Honor	Code:	

	
As	a	member	of	the	UC	Berkeley	community,	I	act	with	honesty	and	integrity.	
	
Signature:	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		
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Problem	1:	(50	Points)	
	
In	a	part	of	a	chemical	process	an	ideal	gas	of	molecular	mass	M	must	be	piped	through	a	
straight,	horizontal	length	of	pipe.	The	pipe	has	an	inside	diameter	of	D.		The	nitrogen	flow	
can	be	considered	turbulent,	isothermal,	and	at	steady	state	at	temperature	T.	The	inlet	
pressure	is	𝑃!,	and	the	outlet	pressure	is	𝑃!.	Nitrogen	is	supplied	at	a	mass	flow	rate	of	𝑚	
and	you	can	assume	a	plug	flow	profile,	and	that	density	and	viscosity	are	constant	across	
the	cross	section	of	the	pipe.	
	

	
	
You	may	find	the	energy	balance	equation	reconstituted	in	terms	of	Helmholtz	free	energy,	
f,	to	be	useful,	along	with	the	following	thermodynamic	identity:	
	

𝜕
𝜕𝑡 𝑓 +

1
2 𝑣 ∙ 𝑣 + 𝑔ℎ 𝜌𝑑𝑉

 

!"
= − 𝑓 +

1
2 𝑣 ∙ 𝑣 + 𝑔ℎ +  

𝑃
𝜌 𝜌𝑣 ⋅ 𝑛𝑑𝐴

 

!"
+ 𝐸! +𝑊!	

	
	

𝑑𝑓 = −𝑠𝑑𝑇 − 𝑃𝑑 𝑣	
	
where	f	is	the	Helmholtz	free	energy	per	unit	mass,	𝑣	is	the	specific	volume	(𝑣 = !

!
) ,	and	s	is	

the	entropy	per	unit	mass.	Also,		f		is	a	function	of	density	(or	specific	volume)	and	
temperature.	Note	the	difference	between	the	meaning	of	the	symbols	for	specific	volume	𝑣	
and	the	velocity	𝑣.		
	
MAKE	ALL	THE	ASSUMPTIONS	THAT	YOU	FEEL	ARE	PHYSICAL.		Note	that	this	problem	
has	parts	(a)	and	(b).	
	
a)	What	is	the	change	in	Helmholtz	free	energy	 𝑓! − 𝑓! 	in	the	pipe?	Your	answer	may	only	
include	R,	T,	P2,	P1,	M,	D,	and	𝑚,	where	R	is	the	universal	gas	constant.		
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Use	the	thermodynamic	relation	to	determine	𝑓! − 𝑓!:		
	

𝑑𝑓 =  −𝑠𝑑𝑇 − 𝑃𝑑𝑣	
	
Isothermal,	so	𝑑𝑓 = −𝑃𝑑𝑣 = −𝑃𝑑 !

!
= −𝑃 − !

!!
𝑑𝜌 = !

!!
𝑑𝜌	

	
Leverage	the	ideal	gas	equation	of	state.	

𝑃𝑉 = 𝑛𝑅𝑇 =
𝑚𝑅𝑇
𝑀 	

	

𝑃 =
𝜌𝑅𝑇
𝑀 	

	

𝜌 =
𝑃𝑀
𝑅𝑇 	

Combine.	

𝑑𝑓 =
𝜌𝑅𝑇
𝑀 ∗

1
𝜌! 𝑑𝜌 =

𝑅𝑇
𝑀𝜌 𝑑𝜌	

	
Integrate.	

𝑓! − 𝑓! =
𝑅𝑇
𝑀 ln

𝜌!
𝜌!
	

	
Rewrite	𝜌	in	terms	of	P	using	the	ideal	gas	law.	
	

𝒇𝟐 − 𝒇𝟏 =
𝑹𝑻
𝑴 𝐥𝐧

𝑷𝟐
𝑷𝟏
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b)	Calculate	the	total	viscous	loss	𝐸!  in	the	pipe.	Your	final	answer	may	include	only	the	
following	variables:	the	gas	constant	R,	T,	P2,	P1,	M,	D,	and	𝑚.	If	you	were	not	able	to	solve	
part	(a),	you	may	leave	the	variable	𝑓	in	your	equation	for	full	credit.	
 
 
Steady	flow,	no	shaft	work,	no	change	in	height.		

0 = − 𝑓 +
1
2 𝑣

! −
𝑃
𝜌 𝜌𝑣 ⋅ 𝑛𝑑𝐴

 

!"
+ 𝐸! 	

	
Evaluate	at	control	surfaces.		

𝐸! =  𝑓! +
1
2 𝑣! ! +

𝑃!
𝜌!

𝜌! 𝑣! 𝐴 −  𝑓! +
1
2 𝑣! ! +

𝑃!
𝜌!

𝜌! 𝑣! 𝐴 	

	
Mass	balance.	

𝜌! 𝑣! 𝐴 = 𝜌! 𝑣! 𝐴 = 𝑚	
	
	
Substitute.		

𝐸! =  
1
2 𝑣! ! +

𝑃!
𝜌!

𝑚 −  
1
2 𝑣! ! +

𝑃!
𝜌!

𝑚 −𝑚(𝑓! − 𝑓!)	

	
Use	the	ideal	gas	law	to	rewrite	𝑃/𝜌	terms	in	terms	of	only	P.		

𝜌 =
𝑀
𝑅𝑇 𝑃	

	
Substitute.			

𝐸! =  
1
2 𝑣! ! +

𝑅𝑇
𝑀
𝑃!
𝑃!

𝑚 −  
1
2 𝑣! ! +

𝑅𝑇
𝑀
𝑃!
𝑃!

𝑚 −𝑚(𝑓! − 𝑓!)	

	
Cancel	identical	terms.	

𝐸! =  
1
2 𝑣! ! 𝑚 −  

1
2 𝑣! ! 𝑚 −𝑚(𝑓! − 𝑓!)	

	
Take	advantage	of	mass	balance.	

𝑣 =
𝑚
𝜌𝐴 =

𝑚𝑅𝑇
𝑀𝐴𝑃	

	
Substitute.		

𝐸! =  
1
2
𝑚!𝑅!𝑇!

𝑀!𝐴!𝑃!!
𝑚 −  

1
2
𝑚!𝑅!𝑇!

𝑀!𝐴!𝑃!!
𝑚 −𝑚(𝑓! − 𝑓!)	

	
Simplify.	

𝐸! =
 𝑚𝑅𝑇
𝑀  

1
2
𝑚!𝑅𝑇
𝑀𝐴!𝑃!!

−  
1
2
𝑚!𝑅𝑇
𝑀𝐴!𝑃!!

−𝑚(𝑓! − 𝑓!)	
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𝐸! =
 𝑚𝑅𝑇
𝑀  8

𝑚!𝑅𝑇
𝜋!𝑀𝐷!𝑃!!

−  8
𝑚!𝑅𝑇

𝜋!𝑀𝐷!𝑃!!
−𝑚(𝑓! − 𝑓!)	

	
Substitute	in	for	𝑓! − 𝑓!	(optional)	
	

𝑬𝑽 =
 𝒎𝑹𝑻
𝑴  𝟖

𝒎𝟐𝑹𝑻
𝝅𝟐𝑴𝑫𝟒𝑷𝟏𝟐

−  𝟖
𝒎𝟐𝑹𝑻

𝝅𝟐𝑴𝑫𝟒𝑷𝟐𝟐
− 𝐥𝐧

𝑷𝟐
𝑷𝟏
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Problem 2. (50 points)  
 

Two immiscible and incompressible, Newtonian fluids fill the annular region between two 
infinitely long cylinders.  The inner cylinder is stationary while the outer cylinder rotates with an 
angular velocity 𝜔.  The inner cylinder has radius 𝑅 and the outer cylinder has radius 4𝑅. Fluid 1 
is in the region between 𝑟 = 𝑅 and 𝑟 = 2𝑅; and Fluid 2 is the region between 𝑟 = 2𝑅 and 
𝑟 = 4𝑅. The cylinder is oriented vertically with gravity acting solely in the z-direction. Fluid 1 
has a viscosity of 12µ and Fluid 2 has a viscosity of µ. Consider the densities of the two fluids to 
be the same as ρ.  The figures below provide a schematic representation of the problem from a 
side view of the cylinder and a top view.  These figures are not necessarily to scale. 
 

   
      Side View          Top View 

 
Assuming that the flow is well developed and at steady-state, what is the velocity profile for 
fluid flow in between the two cylinders as a function of radius? 
 
NOTE:  
1. Assume that the velocity profile is not a function of height z.  
2. Make all the assumptions that seem physical to you.  
3. Make sure to write the relevant equations and the appropriate boundary conditions to get 

partial credit. 
4. Your	final	answer	may	contain	the	following	constants	only	–	gravity	g,	viscosities µ,	

radius	R,	density	ρ, angular velocity 𝜔.	Simplify	your	answer	as	much	as	possible. 
 

 
Steady state, incompressible Newtonian fluid. 
 
Since the outer cylinder is rotating in θ direction, we can assume 𝑣! = 0, 𝑣! = 0. 
 
Also, from symmetry we can assume 𝑣! ≠ 𝑣!  (𝜃) 
 
Since the fluid flow is fully developed in z direction, 𝑣! ≠ 𝑣!  (𝑧) 
 
Thus, from kinematics 𝑣! = 𝑣!  (𝑟) 
 
Simplifying the 𝜃 component for Navier Stokes equation: 
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𝜌
𝜕𝑣!
𝜕𝑡 + 𝑣!

𝜕𝑣!
𝜕𝑟 +

𝑣!
𝑟
𝜕𝑣!
𝜕𝜃 +

𝑣!𝑣!
𝑟 + 𝑣!

𝜕𝑣!
𝜕𝑧

= −
1
𝑟
𝜕𝑃
𝜕𝜃 + 𝜌𝑔! + 𝜇

𝜕
𝜕𝑟

1
𝑟
𝜕
𝜕𝑟 𝑟𝑣! +

1
𝑟!
𝜕!𝑣!
𝜕𝜃! +

2
𝑟!
𝜕𝑣!
𝜕𝜃 +

𝜕!𝑣!
𝜕𝑧!  

 

𝜇
𝜕
𝜕𝑟

1
𝑟
𝜕
𝜕𝑟 𝑟𝑣! = 0 

 
Since the two fluids have different viscosities, the velocity profile needs to be solved separately 
for each region. 
 
For fluid 1 in the region 𝑅 < 𝑟 < 2𝑅: 
 

𝜇!
𝜕
𝜕𝑟

1
𝑟
𝜕
𝜕𝑟 𝑟𝑣!,! = 0 

 
For fluid 2 in the region 2𝑅 < 𝑟 < 4𝑅: 

𝜇!
𝜕
𝜕𝑟

1
𝑟
𝜕
𝜕𝑟 𝑟𝑣!,! = 0 

 
 
 
Integrating twice: 

 

𝑣!,! 𝑟 =
1
2 𝑐!𝑟 +

𝑐!
𝑟       (1) 

 

𝑣!,! 𝑟 =
1
2 𝑐!𝑟 +

𝑐!
𝑟      (2) 

 
Boundary conditions (BC): 
1) No slip: 𝑣!,! 𝑅 =  0 
2) No slip: 𝑣!,! 4𝑅 = 4𝑤𝑅 
3) Continuity of velocity at the fluid interface: 𝑣!,! 2𝑅 = 𝑣!,! 2𝑅  
4) Continuity of shear stress at the fluid interface: 𝜏!",! 2𝑅 = 𝜏!",! 2𝑅  
 
Using BC 1 in eq (1), we get 

𝑐! = −
𝑐!
𝑅! 

 
Using BC 2 in eq (2), we get 

 
𝑐! = 𝜔 −

𝑐!
16𝑅! 
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𝜏!",! = 𝜇 𝑟
𝜕
𝜕𝑟

𝑣!,!
𝑟 = −𝜇!

𝑐!
𝑟!    (3) 

  

𝜏!",! = 𝜇 𝑟
𝜕
𝜕𝑟

𝑣!,!
𝑟 = −𝜇!

𝑐!
𝑟!    (4) 

  
Using BC 4 and eq (3) and (4), we get 

𝜇!𝑐! = 𝜇!𝑐!  
Thus,  

𝑐! = 12𝑐! 
 
Using BC 2 and eq (1 and (2), we get 
 

𝑐!𝑅 +
𝑐!
4𝑅 = 𝑐!𝑅 +

𝑐!
4𝑅 

Substituting for c1, c3 and c2, we get  
𝑐! = −4𝜔𝑅! 

𝑐! = −
𝜔𝑅!

3  
 

𝑐! =
𝜔
3  

𝑐! =
5
4  𝜔 

Thus, we get the following velocity profile for the two fluids: 
 
For fluid 1 in the region 𝑹 < 𝒓 < 𝟐𝑹: 

𝒗𝜽,𝟏 𝒓 =
𝟏
𝟑𝝎𝒓−

𝝎
𝟑𝒓  𝑹𝟐  

 
For fluid 2 in the region 𝟐𝑹 < 𝒓 < 𝟒𝑹: 

𝒗𝜽,𝟐 𝒓 =
𝟓
𝟒𝝎𝒓−

𝟒𝝎
𝒓  𝑹𝟐 

 
 
 


