## EXAMINATION 2

Name:
[Print first name before second! Use capital letters!]
Chemistry 3A
Kim Lavoie
Peter Vollhardt
November 6, 2001
Please check the name of your TA and corresponding section number. Complete the remaining information if applicable.

| 111 | John Antos | 361 | Karl Tupper |
| :--- | :--- | :--- | :--- |
| 121 | Jennifer Barbarow | 371 | Eric Schneider |
| 161 | Dennis Leung | 411 | Amish Patel |
| 171 | Dan Weix | 421 | Jernifer Prescher |
| 211 | Scheherazade Le | 461 | Shahed Ghoghawala |
| 221 | Steve Pham | 511 | Stephany Schuck |
| 311 | David Tang | 521 | Javier Rangel |
| 321 | Joshua Goldberger | 561 | Lianne Beltran |

Making up an I Grade
(If you are, please indicate the semester during which you took previous Chem $3 A$ previously
$\qquad$ ,

Please write the answer you wish to be graded in the spaces provided. Do scratch work on the back of the pages. This test should have 11 numbered pages. Check to make sure that you have received a complete exam. A good piece of advice: read carefully over the questions (at least twice); make sure that you understand exactly what is being asked; avoid sloppy structures or phrases. It is better to be pedantic in accuracy! Good Luck!

DO NOT WRITE IN THIS SPACE

| I. | - | $(60)$ |
| :--- | :--- | :--- |
| II. | - | $(30)$ |
| III. | - | $(30)$ |
| IV. | - | $(30)$ |
| V. | $(30)$ |  |
| VI. | - | $(20)$ |
| Total: | - | $(200)$ |

1. [60 Points] Add the missing starting materials, reagents, or products (aqueous work-up is assumed where necessary). Don't forget stereochemistry!
a.

b.


Circle one: Racemic
Optically active
c.
d.

$+\mathrm{LiAlH}_{4}$ $\qquad$

e.


Pure enantiomer


Fill in the missing substituents!
g.

$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$
h.


i.


An oxacyclopropane

11. [30 Points] The following reactions proceed (predominantly) by $\mathrm{S}_{\mathrm{N}} 2, \mathrm{~S}_{\mathrm{N}} 1, \mathrm{E} 2$, or E 1 pathways, respectively. Give the predominant product (one only) in each case and answer the questions by circling the most applicabie statement.
a.


An alkene

Mechanism:

$$
S_{N} 2
$$

$S_{N} 1$
E2
E1

At lower temperatures one of the following ratios will increase:
$S_{N} 2 / S_{N} 1$
$S_{N} 1 / E 1$
E2 / E1
$S_{N} 2 / E 2$
b.


Mechanism:
$S_{N} 2$
$S_{N} 1$
E2
E1

Changing the alkoxide to $\mathrm{CH}_{3} \mathrm{O}^{-} \mathrm{K}^{+}$causes one of the following ratios to increase:
E2 / E1
$\mathrm{S}_{\mathrm{N}} 2 / \mathrm{E} 2$
$\mathrm{S}_{\mathrm{N}} 1 / \mathrm{E} 1$
$\mathrm{E} 2 / \mathrm{S}_{\mathrm{N}} 2$
c.


Mechanism:

$$
\mathrm{S}_{\mathrm{N}} 2
$$

$$
S_{N} 1
$$

E2
E1

Changing from ammonia to lithium amide, $\mathrm{Li}^{+} \mathrm{NH}_{2}$, causes one of the following ratios to increase: $E 2 / S_{N} 2 \quad E 2 / E 1 \quad S_{N} 2 / S_{N} 1 \quad$ rearrangement $/ S_{N} 2$
d.

$\mathrm{CH}_{3} \mathrm{Se}^{-}, \mathrm{CH}_{3} \mathrm{OH}$ solvent

## Mechanism:

$$
S_{N} 2
$$

$S_{N} 1$
E2
E1

Changing the solvent to DMSO will have one or more of the following effects (circle all that apply): rate increases
$S_{N} 2 / S_{N} 1$ increases
solvation of the $\mathrm{Nu}^{-}$- decreases
e.

$$
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH} \xrightarrow{\mathrm{H}^{+}, \mathrm{CH}_{3} \mathrm{OH} \text { solvent, }-20^{\circ} \mathrm{C}}
$$

## Mechanism:

$\mathrm{S}_{\mathrm{N}} 2$
$S_{N} 1$
E2
E1

Changing the solvent to $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$ causes one of the following ratios to increase:
$S_{N} 2 / S_{N} 1$
E2/E1
$E 1 / S_{N} 1$
$\mathrm{S}_{\mathrm{N}} 2 / \mathrm{E} 2$
III. [30 Points] Explain the following observations by a detailed mechanism (i.e., write a scheme with structures, use arrow-pushing, etc.)
a.

optically active
$\mathrm{LiAlH}_{4}$

optically active
(Hint: Note the change in stereochemistry!)
b.

IV. [30 Points] Provide a viable synthesis of the following compounds from any starting materials containing four carbons or less. Work backwards!
a.

b.


Hint: You need to start with a defined stereoisomer of your starting material.
(racemic)
V. [30 Points] A researcher treated propane with $\mathrm{Cl}_{2}$ in the presence of traces of dibenzoyl peroxide as a radical initiator. Careful separation of the product mixture revealed a minor contaminant with the ${ }^{1} \mathrm{H}$ NMR spectrum shown below:

a. What is the structure of this compound?

b. Assign the spectrum by labeling the hydrogens giving rise to the absorption centered at $\delta=$ 2.2 ppm with the letter " A ", those at $\delta=3.7 \mathrm{ppm}$ with " B " in the drawing in the box above.
c. Explain your assignment in b.
d. Explain the multiplicity of the peaks using the $(N+1)$ rule.
VI. [20 Points] The hydrogen highlighted by an arrow in the following compounds is expected to give rise to the circled signal pattern in the ${ }^{1} \mathrm{H}$ NMR spectrum:
a.

singlet
doublet
triplet
quartet
b.

singlet
doublet
triplet
quartet
c.

singlet
triplet
quintet
septet
d.

singlet
doublet
doublet of quartet
doublets

*The End *

