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Question 1
A Particle on a Spinning Cone
20 Points

As shown in Figure 1, a particle of mass m is attached to a fixed point O by a linearly elastic
spring. The spring has a stiffness K and an unstretched length ¢,. The particle is free to move
on the smooth surface of a cone which rotates about the vertical z axis with a speed Q(t). A
vertical gravitational force —mgE; acts on the particle, and the semi angle 5 — a of the cone is
constant.

(a) (b)

Figure 1: (a) Schematic of a particle of mass m which is attached to a fived point O by an elastic spring. A
vertical gravitational force —mgEs3 acts on the particle and the particle is free to move in a smooth cone which is
rotating about the vertical z axis with a non-constant speed Q = Q(t). (b) Representative motion of the particle
on the cone.

In your answers to the questions below, please make use of the results on spherical polar coor-
dinates on Page 3.

(a) (5 Points) What is the constraint on the motion of the particle? Give a prescription for the
constraint force enforcing this constraint.

(b) (5 Points) Draw a freebody diagram of the particle. Your freebody diagram should include
a clear expression for the spring force.

(c) (5 Points) Establish the second-order differential equations governing the motion of the
particle.

(d) (5 Points) Show that the total energy E and the angular momentum Hp - Ej5 of the particle
are conserved during the motion of the particle.



Question 2
A Particle on a Surface
30 Points

As shown in Figure 2, a particle of mass m is free to move on a surface z = f(z).

e

Surface z = f(z)
e E,;
/ o

B,
Figure 2: Schematic of a particle of mass m which is moving on a rough surface z = f(x) in E> under the
influence of a gravitational force.

To establish the equations of motion for the particle, the following curvilinear coordinate system
is defined for E3:

¢ =z =y ¢=n=z-f() (1)
(a) (7 Points) Show that the covariant basis vectors for this system are
0
a; = El —+ —ng, Ay — EQ, az = E3. (2)
Oz
Compute the matrix [a;z]. You will find it helpful to use the abbreviation f, = %.

(b) (8 Points) What are the contravariant basis vectors a* for this coordinate system? Compute
the inverse of the matrix [a].

(c) (10 Points) Assuming the particle is in motion on the rough surface z = f(x) under a
gravitational force —mgEs3, establish the equations of motion for the particle.

(d) (5 Points) Show that the equations of motion of a particle constrained to move on a smooth
q' coordinate curve in the presence of a gravitational force —mgEs can be expressed in the form

m (L+ f2) & +mfyfoad® = —mgfo, (3)
9%f

where f,, = 52— Using the equation of motion (3), compute possible equilibrium positions of
the particle and give a physical interpretation of the positions you find. Feel free to use the
specific example f(x) = Asin (%) to illustrate your answer if you wish.




Notes on Spherical Polar Coordinates

Recall that the spherical polar coordinates {R, ¢,0} are defined using Cartesian coordinates
{z = x1,y = 29,2 = x3} by the relations:

Va4 23
R = /2% + a3 + 23, 9:arctan<@) : gbzarctan(g).
L1 T3

In addition, it is convenient to define the following orthonormal basis vectors:

er cos(0)sin(¢) sin(f)sin(¢)  cos(¢) E,
ey, | = | cos(f)cos(¢) sin(f)cos(¢) —sin(¢p) E,
ey —sin(0) cos(6) 0 E;
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Figure 3: Spherical polar coordinates

For the coordinate system {R, ¢, 0}, the covariant basis vectors are
a; =ep, a=Re;, az= Rsin(¢)ey.

In addition, the contravariant basis vectors are

1 1
al =ep, a’= al= — ey

R Rsin(¢)

For a particle of mass m which is unconstrained, the linear momentum G, angular momentum
Hyo and kinetic energy T' of the particle are
G = mRa;, + md)ag + mfas ,
Ho = mR? (éeg — ésin(¢)e¢> ,

T = % (1%2 + R** + R? Sin2(¢>)92) .
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