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First Midterm Examination
Thursday September 28 2011
Closed Books and Closed Notes
Answer All Three Questions

Question 1
A Particle in a Newtonian Gravitational Field
25 Points

As shown in Figure 1, a particle of mass m is free to move in space. The particle is under the

influence of a gravitational force
GMm

T
I

where r is the position vector of the particle relative to a fixed point O.
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Figure 1: Schematic of a particle of mass m which is moving in E> under the influence of a gravitational force
F,.

In your answers to the questions below, please make use of the results on spherical polar coor-
dinates on Page 4.

(a) (5 Points) Using a spherical polar coordinate system, give an expression for the Lagrangian
L =T — U of the particle.

(b) (5 Points) What are Lagrange’s equations of motion for the particle?

(¢) (5 Points) Starting from the work energy theorem 7= F - v show that the total energy E
of the particle is conserved.

(d) (3 Points) Using the angular momentum theorem Hp = r x F, show that the angular
momentum Hyp of the particle is conserved.

(e) (7 Points) Show that one of Lagrange’s equations of motion that you calculated in (b) is
equivalent to the statement that Hy - E3 is conserved.



Question 2
A Bead on a Rotating Wire
25 Points

Consider a bead of mass m which is free to move on a rough rod (cf. Figure 2) which is being
spun about the vertical with a constant angular speed €. With the help of a spherical polar
coordinate system, the constraints on the particle can be expressed as

é = QO> ¢ = ¢0a (2)

where (g and ¢, are constants. The particle is subject to the influence of a gravitational force
—mgEs;.

Rough rod

E,

Figure 2: A particle of mass m which is free to move on a rough rod which is rotating about Es with a constant
angular speed €.

In your answers to the questions below, please make use of the results on spherical polar coor-
dinates on Page 4.

(a) (5 Points) Suppose that the particle is in motion on the rough rod. What is the velocity
vector v, of the particle relative to the rod? Give a prescription for the constraint force F,
acting on the particle.

(b) (13 Points) Show that the following equations govern the motion of the particle:
mR — mQ2Rsin® (¢g) + mgcos (pg) = F.-ay,
—mR?sin (¢g) cos (¢o) Q2 — mgRsin (¢g) = F.-ay,

% (mR®sin’® (¢9) Q) = F.-as. (3)

In your solution, give clear expressions for F. - a;.

(c) (7 Points) Suppose that the particle is stationary on the rod: v, = 0 and R = Ry. Give a
prescription for the constraint force F, in this case. Then, with the help of (3), show that, if

then the static friction force acting on the particle is 0.



Question 3
A Curvilinear Coordinate System
30 Points

Consider the following curvilinear coordinate system for [E3:
¢ =r=+22+12 q2:9:arctan(g), ¢’ =z—pr (5)
x

where 3 > 0 is a constant. An example of the graph of z = 5% + ¢ is shown in Figure 3.

Figure 3: Graph of the function z = Br? + co when co and 3 are positive constants.

In your answers to the questions below, please make use of the results on cylindrical polar
coordinates on Page 5.

(a) (6 Points) Show that the covariant basis vectors for the coordinate system (5) are

a; = e, + 2BTE3, A9 = '€y, az — E3. (6)

(b) (6 Points) Verify that the contravariant basis vectors for the coordinate system (5) are

1
al =e,, a’ = —ey, a’ = —28re, + E;. (7)
r

(c) (8 Points) On a ¢*> = 6 coordinate surface, draw representative examples of the covariant
basis vectors a; and as, representative examples of the contravariant basis vectors a' and a?,
and representative examples of the ¢! and ¢* coordinate curves. (Points will not be awarded if
your figure is illegible).

(d) (10 Points) Consider a particle of mass m moving on a smooth paraboloid of revolution:
z—pr2=0, (8)

where 3 is a positive constant. In addition to a constraint force, a vertical gravitational force
—mgE3 acts on the particle. Show that the equations of motion for the particle can be reduced
to a single differential equation:

2

h
m (1 + 4627“2) P+ dAmBiri? — o = —2mgpr, 9)

where h is a constant: '
h = mr26. (10)



Notes on Spherical Polar Coordinates

Recall that the spherical polar coordinates {R, ¢,0} are defined using Cartesian coordinates
{z = x1,y = 29,2 = x3} by the relations:

Va4 23
R = /2% + a3 + 23, 9:arctan<@) : gbzarctan(g).
L1 T3

In addition, it is convenient to define the following orthonormal basis vectors:

er cos(0)sin(¢) sin(f)sin(¢)  cos(¢) E,
ey, | = | cos(f)cos(¢) sin(f)cos(¢) —sin(¢p) E,
ey —sin(0) cos(6) 0 E;

/;

E;
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Figure 4: Spherical polar coordinates

For the coordinate system {R, ¢, 0}, the covariant basis vectors are
a; =ep, a=Re;, az= Rsin(¢)ey.

In addition, the contravariant basis vectors are

1 1
al =ep, a’= al= — ey

R Rsin(¢)

For a particle of mass m which is unconstrained, the linear momentum G, angular momentum
Hyo and kinetic energy T' of the particle are
G = mRa;, + md)ag + mfas ,
Ho = mR? (éeg — ésin(¢)e¢> ,

T = % (1%2 + R** + R? Sin2(¢>)92) .



Notes on Cylindrical Polar Coordinates

Recall that the cylindrical polar coordinates {r,0,z} are defined using Cartesian coordinates
{z = x1,y = 29,2 = x3} by the relations:

L2
r=/ a3+ a3, 9:arctan(—), Z =13
L1

In addition, it is convenient to define the following orthonormal basis vectors:

e, cos() sin(f) 0 E;
e | = | —sin(f) cos(d) 0 E,
e, 0 0 1 E;

€g

€

Figure 5: Cylindrical polar coordinates

For the coordinate system {r, 0, z}, the covariant basis vectors are
a =e€,, azx=7"Tey, az=e;.
In addition, the contravariant basis vectors are

1
al=e,, a’=-¢), a’=e,.
r

The gradient of a function u(r, @, z) has the representation

@e +@1e +%E
or " or ! 5

Vi = 0z
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