
Midterm 1 Solution

CBE 162, Spring 2017

March 21, 2017

Problem 1 (60 pts). A jacketed, well-mixed vessel for heating a liquid medium
using condensing steam is shown in Figure 1. The vessel is cylindrical with ra-
dius r. The inlet temperature and volumetric flow of the liquid are Tf and qf ,
respectively. The process inputs include volumetric flow rates qf and q as well
as the steam temperature Ts.The liquid temperature T in the tank and the tank
level h are the measured process outputs.

Figure 1: A jacketed, well-mixed heating vessel.

a. (20 pts) Derive a linear dynamic model for the process at hand. State all
your modeling assumptions.

Assuming (3 pts) for at least 3 assumptions

• Shaft work is negligible

• Kinetic and potential energy terms in energy balance is negligible

• Liquid is incompressible i.e., constant density

• Constant cp

• Steam in jacket does not appreciable cool i.e, is at constant temper-
ature Ts.

• Loss of mass due to evaporation is negligible

Overall mass balance (3 pts)

ρ
dV

dt
= ρAc

dh

dt
= ρqf − ρq (1)

Ac
dh

dt
= qf − q (2)
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Energy balance (6 pts)

ρcp
dV T

dt
= ρcpqf (Tf − Tref ) − ρcpq(T − Tref ) + UAh(Ts − T ) (3)

T
dV

dt
+ V

dT

dt
= qf (Tf − Tref ) − q(T − Tref ) +

UAh
ρcp

(Ts − T ) (4)

Substituting (2)

hAc
dT

dt
= qf (Tf − Tref ) − q(T − Tref ) − T (qf − q) +

UAh
ρcp

(Ts − T ) (5)

dT

dt
=

qf
hAc

(Tf − T − Tref ) +
q

hAc
(Tref ) +

UAh
ρcphAc

(Ts − T ) (6)

let Tref=0 and with tank perimeter pT , heat transfer area Ah=pTh,

dT

dt
=

qf
hAc

(Tf − T ) +
UpT
ρcpAc

(Ts − T ) (7)

(2) is already linear. In terms of deviation variables:

Ac
dh̄

dt
= q̄f − q̄ (8)

Linearizing (5), (8 pts)

dT̄

dt
∼ (Tf,ss − Tss)

Achss
q̄f +

UpT
ρcpAc

T̄s (9)

−
(
qf,ss
Achss

+
UpT
ρcpAc

)
T̄ −

(
qf,ss(Tf,ss − Tss)

Ach2ss

)
h̄ (10)
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b. (12 pts) Define state, input, and output vectors. Express the model equa-
tions obtained in part a in the linear state-space form.

The linear state-space model takes the form

dx

dt
= Ax+Bu (11)

y = Cx+Du (12)

With state and input and output vectors (1 pt)

x =

[
T̄
h̄

]
u =

q̄fq̄
T̄s

 y = x =

[
T̄
h̄

]
(13)

The model equations are (10 pts) 1 for each matrix element

dx

dt
=

d

dt

[
T̄
h̄

]
=

[
−
(
qf,ss
Achss

+ UpT
ρcpAc

)
−
(
qf,ss(Tf,ss−Tss)

Ach2
ss

)
0 0

] [
T̄
h̄

]
(14)

+

[
(Tf,ss−Tss)
Achss

0 UpT
ρcpAc

1
Ac

− 1
Ac

0

]q̄fq̄
T̄s

 (15)

and (1 pts) for correct C matrix

y =

[
T̄
h̄

]
=

[
1 0
0 1

] [
T̄
h̄

]
(16)
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c. (20 pts) Derive the transfer functions relating the tank level h and the liq-
uid temperature T to the three process inputs. Clearly define any lumped
parameters you use.

Let (2 pts) for lumped parameter definitions

α1 =
qf,ss
Achss

+
UpT
ρcpAc

α2 =
qf,ss(Tf,ss − Tss)

Ach2ss
α3 =

(Tf,ss − Tss)

Achss
(17)

α4 =
UpT
ρcpAc

α5 = Ac (18)

re-writing the linearized model equations

α5
dh̄

dt
= q̄f − q̄

dT̄

dt
= α3q̄f + α4T̄s − α1T̄ − α2h̄

Taking the Laplace transform of each equation (4 pts) 2 for each

sH(s) =
Qf (s)

α6
− Q(s)

α6
(19)

sT (s) = α3Qf (s) + α4Ts(s) − α1T (s) − α2H(s) (20)

Rearrange to obtain the transfer functions between h and qf and q. Fluid
height is not related to the steam temperature Ts. (6 pts) 2 for each
transfer function

H(s) =
1

α6s
Qf (s) − 1

α6s
Q(s) + 0Ts(s)

For the temperature transfer functions, substitute for H(s) (2 pts) for
correct substitution

(s+ α1)T (s) = α3Qf (s) + α4Ts(s) −
α2

α6s
Qf (s) +

α2

α6s
Q(s) (21)

Re-arrange to obtain, (6 pts) 2 for each transfer function

T (s) =
α4

s+ α1
Ts(s) +

(
α3 −

α2

α6s

)
1

s+ α1
Qf (s) +

(
α2

α6s

)
1

s+ α1
Q(s)

(22)

T (s) =
α4

s+ α1
Ts(s) +

α3α6s− α2

α6s(s+ α1)
Qf (s) +

α2

α6s(s+ α1)
Q(s) (23)
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d. (8pts) Can the response of the liquid temperature T to any of the process
inputs show a nonminimum phase behavior? If so, derive the condition(s)
under which the nonminimum phase behavior is observed and provide a
physical interpretation for this behavior.

The transfer function between T (s)
Qf (s)

exhibits numerator dynamics. Non-

minimum phase behavior relates to positive zeros (2pts), hence the con-
ditions for inverse response are (2 pts)

α2

α3α6
> 0 (24)

Note α6 must be positive by definition. Then the condition reduces to
(2pts)

α2

α3
> 0 (25)

α2

α3
=

1

hss
> 0, (26)

Since tank height can’t be negative, the above condition holds and inverse
response will be observed. (2pts)
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Problem 2. (50 pts) We aim to design a closed-loop control system for a gas
absorber that reduces the concentration of SO2 in a gas effluent via manipulating
the inlet water flow rate to the absorber. The first-order dynamics of the gas
absorber can be described by

Gp(s) =
C̄(s)

F̄ (s)
=

−0.05

2s+ 1
,

where C̄(t) is the effluent SO2 concentration and F̄ (t) is the water flow rate,
both defined in terms of deviation variables based on the steady-state values
Css = 100 ppm and Fss = 250 gpm. The characteristic equation of the closed-
loop system is given by 1 + GcGvGpGm = 0, where Gc, Gv, and Gm denote
the transfer functions for the controller, valve, and measurement sensor, respec-
tively.

a. (3 pts) We first intend to design a proportional-only controller with pos-
itive gain for this system. Assuming that the sensor has a positive gain,
determine whether the gain of the valve can be positive. Explain your
choice.

If the gain of the valve is positive, then a positive error Ysp − Y increases
the water flow rate. This means that when the setpoint is higher than
the current SO2 concentration, decreases the concentration decreases and
moves farther from the setpoint. Therefore, the valve gain cannot be
positive.
(+2) for correct answer
(+1) for explanation

b. (14 pts) Assume Gm = 1 mV/ppm and Gv = −1 gpm/mV (note that
the voltage output of the concentration analyzer is in mV). Consider a
PI controller with the integral time constant τI = 0.5 min. Determine
the range of all possible values for the proportional gain Kc. The transfer
function for a PI controller is given by

Gc(s) = Kc

(
1 +

1

τIs

)
.

For the closed loop to be stable, the roots of the characteristic equation
must be less than zero.

1 +GcGvGpGm = 0

1 +Kc

(
1 +

1

τIs

)
(−1)

−0.05

2s+ 1
(1) = 0

1 +
0.05Kc(0.5s+ 1)

0.5s(2s+ 1)
= 0

0.5s(2s+ 1) + 0.05Kc(0.5s+ 1) = 0

s2 + (0.5 + 0.025Kc)s+ 0.05Kc = 0

s =
−(0.5 + 0.025Kc) ±

√
(0.5 + 0.025Kc)2 − 4(0.05Kc)

2
< 0
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Root 1:

−(0.5 + 0.025Kc) +
√

(0.5 + 0.025Kc)2 − 4(0.05Kc) < 0√
(0.5 + 0.025Kc)2 − 4(0.05Kc) < (0.5 + 0.025Kc)

(0.5 + 0.025Kc)
2 − 4(0.05Kc) < (0.5 + 0.025Kc)

2

Kc < 0

Root 2:

−(0.5 + 0.025Kc) −
√

(0.5 + 0.025Kc)2 − 4(0.05Kc) < 0

Kc > 0

(+2) for stability criterion
(+4) for writing out closed-loop characteristic equation
(+2) for substituting values in closed-loop characteristic equation
(+2) for quadratic formula
(+4) for correct range of Kc
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c. (13 pts) Using the PI controller of part b, we would like to achieve a
closed-loop response that is underdamped with a damping ratio of 0.5.
Determine the proportional gain Kc of the PI controller such that the
desired closed-loop response can be achieved. Note: You may leave your
answer in the quadratic formula, if necessary.

From part b,
s2 + (0.5 + 0.025Kc)s+ 0.05Kc = 0

1

0.05Kc
s2 +

(0.5 + 0.025Kc)

0.05Kc
s+ 1 = 0

τ2 =
1

0.05Kc

τ =

√
1

0.05Kc

2τζ =
0.5 + 0.025Kc

0.05Kc

2(0.5)

√
1

0.05Kc
=

0.5 + 0.025Kc

0.05Kc√
0.05Kc = 0.5 + 0.025Kc

0.05Kc = 0.25 + 0.025Kc + 6.25 × 10−4K2
c

6.25 × 10−4K2
c − 0.025Kc + 0.25 = 0

Kc =
0.025 ±

√
(−0.025)2 − 4(6.25 × 10−4)(0.25)

2(6.25 × 10−4)

Kc = 20

(+2) for writing down characteristic equation in standard form
(+2) for solving for τ
(+2) for solving for 2τζ
(+2) for substituting in values for τ and ζ
(+2) for quadratic formula
(+3) for final answer
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d. (20 pts) Now reality strikes! We can no longer ignore the sensor and valve
dynamics. The voltage output of the gas analyzer is calibrated as

V (t) = 0.45 + 1.2C(t),

where the voltage output V (t) is in mV and the SO2 concentration C(t)
is in ppm. In the calibration model above, 0.45 corresponds to the base
analyzer output at steady state. The gas analyzer has a sampling line
with a time delay of 0.2 min. The valve exhibits first-order dynamics with
a gain of − 0.9 gpm/mV and a time constant of 0.3 min.

EPA is imposing stringent regulations on the output SO2 concentration
of the absorber. For the controller

Gc(s) = 25

(
1 +

1

0.5s

)
obtain the transfer function between the concentration setpoint and the
measured concentration of the absorber. Analyze the closed-loop response
in terms of its initial and steady-state behavior when the setpoint concen-
tration is abruptly changed from its steady-state value of 100 ppm to 90
ppm.

Take the Laplace transform:

Gm =
V̄ (s)

C̄(s)
= 1.2e−0.2s

Gv =
−0.9

0.3s+ 1

Closed Loop response:

1 +GcGvGpGm = 0

1 + 25

(
0.5s+ 1

0.5s

)(
−0.9

0.3s+ 1

)(
−0.05

2s+ 1

)
(1.2e−0.2s) = 0

Use a first-order Pade approximation:

1 + 25

(
0.5s+ 1

0.5s

)(
−0.9

0.3s+ 1

)(
−0.05

2s+ 1

)(
1.2(−0.1s+ 1)

0.1s+ 1

)
= 0

Transfer Function:
Y

Ysp
=

GcGvGp
1 +GcGvGpGm

Y

Ysp
=

25
(
0.5s+1
0.5s

) ( −0.9
0.3s+1

)(
−0.05
2s+1

)
1 + 25

(
0.5s+1
0.5s

) ( −0.9
0.3s+1

)(
−0.05
2s+1

)(
1.2(−0.1s+1)

0.1s+1

)
Final Value Theorem

lim
t→∞

y(t) = lim
s→0

sY (s)

lim
s→0

sY (s) = s ·
25
(
0.5s+1
0.5s

) ( −0.9
0.3s+1

)(
−0.05
2s+1

)
1 + 25

(
0.5s+1
0.5s

) ( −0.9
0.3s+1

)(
−0.05
2s+1

)(
1.2(−0.1s+1)

0.1s+1

) · −10

s
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lim
s→0

sY (s) =
25(0.5s+ 1)(−0.9)(−0.05)(0.1s+ 1)(−10)

(0.5s)(0.3s+ 1)(2s+ 1)(0.1s+ 1) + 25(0.5s+ 1)(−0.9)(−0.05)(1.2)(−0.1s+ 1)

lim
s→0

sY (s) =
25(1)(−0.9)(−0.05)(1)(−10)

25(1)(−0.05)(−0.9)(1.2)(1)

lim
s→0

sY (s) =
−10

1.2
= −8.33

(+2) for transfer function Gm
(+2) for transfer function Gv
(+2) for plugging in time delay
(+4) for writing transfer function Y/Ysp
(+3) for plugging in expressions for Gc,Gv,Gp,Gm
(+3) for writing final value theorem
(+2) for correct input U(s)
(+2) for final answer
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