
MT2 Solutions

1. (a) For a potential with two sloped walls, we have the following quantization con-
dition (see Griffiths pg 332).∫ x+

x−

√
2m(E − V (x))dx = π~(n− 1/2)

where x± = ±
√

2E
mω2 , are the classical turning points.

By symmetry:

2

∫ x+

0

√
2m

mω2x2+
2

(1− x2/x2+)dx = π~(n− 1/2)

Using the proved integral with b = 1/x2:

2mωx+

[
1

2
x
√

1− x2/x2+ +
x2 arcsin(x/x+)

2

]x2
0

= π~(n− 1/2)

πmωx2+
2

= π~(n− 1/2)

If we substitute x+ =
√

2E
mω2 , we find:

E = ~ω(n− 1/2)

We see WKB gives the exact energies for a SHO is this case. (Don’t let the
−1/2 bother you, its just a statement that we begin indexing our solutions at
n = 1 instead of n = 0.

(b) At energies where the turning point is x = |a|, the quantization condition be-
comes:

2

∫ a

0

√
2m

mωx20
2

(1− x2/x20)dx = n~π

where x0 =
√

2E/(mω2). The integral has exactly the same form as that in
part a (but with different bounds). When evaluated, we find:

2mωx0

[
1

2
x
√

1− x2/x20 +
x0 arcsin(x/x0)

2

]a
0

= π~n

1



Plugging in, we find:

2mωx0

[
1

2
a
√

1− a2/x20 +
x0 arcsin (a/x0)

2
− 1

2
a

]
= π~n

We can simplify ur result if we take x0 >> a, (note there is a typo in the
problem). Note to first order, arcsin(ε) ≈ ε and

√
1− ε = 1. Using these

results, we find:

2mωx0a = π~n → E =
(nπ~)2

2ma2

Is this surprising? Not really, assuming x0 >> a is equivalent to assuming E >>
mω2a2

2 ≥ V (x). In this approximation, p(x) =
√

2m(E − V (x)) ≈
√

2mE. This
is exactly the momentum we assign to a particle in confined to in potential well
with flat bottom. We have also seen WKB gives the exact particle in a box
energy levels for a particle confined to well of length a. (See Griffiths pg 319).
This explains the result.

2. Recall:

cb(t) = − i
~

∫ t

0
〈b|H ′(t′)|a〉 eiωt′dt′

We want to compute cb(2τ + T ) given H ′(t) = Vab cos(ωt)

cb(2τ + T ) = − i
~
Vab

[ ∫ τ

0
cos(ωt′)eiω0tdt′ +

∫ 2τ+T

τ+T
cos(ωt′)eiω0t′dt′

]
= − 1

2~
Vab

([
ei(ω0−ω)t

ω0 − ω

]τ
0

+

[
ei(ω0−ω)t

ω0 − ω

]2τ+T
τ+T

)
Note: in line 2 I have neglected terms that are suppressed by 1/(ω0+ω) as instructed
in the problem statement. Letting δ = ω0 − ω and evaluating the above, we find:

cb = − 1

2~
Vab
δ

[eiδτ − 1 + eiδ(T+2τ) − eiδ(T+τ)]

= − 1

2~
Vab
δ

(eiδτ − 1)(eiδ(T+τ) + 1)

= −2i

~
Vab
δ

sin(δτ/T ) cos(δ(τ + T )/2)eiδ(T+2τ)/2

So we see:

P = |cb|2 =
4|Vab|2

~2
sin2(δτ/2) cos2(δ(τ + T )/2)

δ2

Recalling:

sin(a) cos(b) =
1

2
(sin(a+ b) + sin(a− b))
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we can write:

P =
4|Vab|2

~2
[sin(δ(T + 2τ)/2)− sin(δT/2)]2

δ2

Below, we plot P vs δ with T = 9τ .
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3. (a) We write V (z) as a taylor series (ie. V (z) ≈ V (0) + V ′(0)z + 1
2V
′′(0)z2 + ...).

V ′(z) = V0k sin(2kz) → V ′(0) = 0

V ′′(z) = 2V0k
2 cos(2kz) → V ′′(0) = 2V0k

2

So we find:
V ≈ V0k2z2

If we write this as: 1
2mω

2
0z

2, we identify ω0 =
√

2V0/m k

(b) Keeping only terms linear in ε, we find the perturbing hamiltonian has the from:

H ′(t) = mω2
0εkz sin(ωt)

The probability amplitude for finding the particle in state |1〉 at the end of the
perturbation is:

c1 = − i
~

∫ T

0
mω2

0εk 〈1|z|0〉 sinωt eiω10tdt

= − i
~
mω2

0εk

√
~

2mω0

∫ T

0
sin(ωt)eiω10tdt

=
1

2~
mω2

0εk

√
~

2mω0

[
ei(ω10−ω)t

ω10 − ω

]T
0
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Note: Once again we have dropped terms suppressed by 1/(ω + ω0). Also note
the three different ω in the expression. Here, ω10 = (E1−E0)/~. We now finish
up the problem.

c1 =
i

~
mω2

0εk

√
~

2mω0
ei(ω10−ω)T/2 sin (ω10 − ω)

ω10 − ω

=
ε

2
mω2

0

1√
~ω0V0

ei(ω10−ω)T/2 sin (ω10 − ω)

ω10 − ω

P = |c1|2 =
ε2

4

m2ω3
0

~V0
sin2(ω10 − ω)

(ω10 − ω)2

4. (a) The Schrodinger equation reads(
− ~2

2m
∇2 + V (r)

)
ψ = Eψ

Noting that we can write the Laplacian as

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
− L2

~2r2

taking ψ = u(r)
r Y m

l (θ, φ) gives

− ~2

2m

(
1

r2
∂

∂r

(
r2
∂

∂r

[
u(r)

r

])
Y m
l (θ, φ)− l(l + 1)

r2
u(r)

r
Y m
l (θ, φ)

)
= E

u(r)

r
Y m
l (θ, φ)− V (r)

u(r)

r
Y m
l (θ, φ)

using the fact that L2Y m
l = ~2l(l + 1)Y m

l . Since

∂

∂r

(
r2
∂

∂r

[
u(r)

r

])
= ru′′(r)

we can divide both sides of (??) by −~2Ym
l

2mr3
to yield

u′′(r)− 2m

~2

(
~2l(l + 1)

2mr2
+ V (r)− E

)
u(r) = 0

i.e. u′′(r) +
p2eff (r)

~2
u(r) = 0, where

peff (x) ≡
√

2m (E − Veff (r))

Veff (r) ≡ ~2l(l + 1)

2mr2
+ V (r)
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(b) Taking u(r) ≡ a(r)eif(r) gives

u′′ =
(
a′′ + 2ia′f ′ − af ′2 + iaf ′′

)
eif

so that (??) reads

a′′ + 2ia′f ′ + iaf ′′ − af ′2 +
p2eff (r)

~2
a = 0

after dividing through by eif . Now, we assume (without loss of generality) that
a(r), f(r) are real, and taking r in the “classical region” such that peff (r) is
also real, we can separate (??) into two equations for the real and imaginary
parts:

a′′ − af ′2 +
p2eff (r)

~2
a = 0

2a′f ′ + af ′′ =
(
a2f ′

)′
= 0

The second equation is easily solved:

a(r) =
C ′√
f ′(r)

for some constant C ′. To solve (??), assume that a(r) is slowly-varying so that
a′′ is negligible compared to the other terms. In this case we have

f ′2 =
p2eff (r)

~2

⇒ f(r) = ±1

~

∫
peff (r)dr

so that

u(r) ∼=
C√
peff (r)

e±
i
~
∫
peff (r)dr

inputting the solution for f ′(r) and absorbing constants into the new constant
C. This is the same result as in 1D except that the momentum is replaced by an
effective momentum resulting from the effective (centrifugal) potential energy.

(c) In such an “infinite spherical well” potential, our effective 1D potential Veff (r)
has one vertical wall at r = R and (for l > 0) a sloping wall for 0 < r < R. Since
u(r) has the same form as ψ(x) in the 1D WKB derivation, the 1D connection
formulas (Griffiths section 8.3) must also hold. Thus, we can use the usual
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connection formula for a potential with one vertical wall with the replacement
p(x)→ peff (r) and the Langer correction l(l + 1)→ (l + 1/2)2, giving∫ R

r1

peff (r)dr =

(
n− 1

4

)
π~

⇒
∫ R

r1

√
2mE − ~2(l + 1/2)2

r2
dr =

(
n− 1

4

)
π~

where r1 is the classical turning point such that Veff (r1) = E, so that

r1 =

√
~2(l + 1/2)2

2mE

5. The total energy is given by:

E(α) =

∫ ∞
−∞

ψ∗(x)
−~2∇2

2m
ψ(x)dx+

∫ a/2

−a/2
ψ∗(x)(−V0)ψ(x)dx

Lets take a look at the kinetic term:

〈T 〉 =
~2

2m

√
α

π

∫ ∞
−∞

dψ∗

dx

dψ

dx
dx

=
~2

2m

√
α

π

∫ ∞
−∞

α2x2e−αx
2
dx

=
~2

2m

√
α5

π
(−∂α)

∫ ∞
−∞

e−αx
2
dx

=
~2

2m

√
α5

π
(−∂α)

√
π

α

=
~2α
4m

Now we turn to the potential term:

〈V 〉 =

∫ a/2

−a/2
ψ∗(x)(−V0)ψ(x)dx

〈V 〉 = (−V0)
∫ a

−a

√
α

π
e−αx

2
dx

= (−V0)
∫ ∞
−∞

√
α

π
e−αx

2
dx

= −V0
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In the second line, we have used the fact that 1/α << a2 → 1 << αa2, to extend the
bounds of integration to ±∞. So we find:

E(α) =
~2α
4m
− V0

This is minimized when α = 0, and we find E = −V0.
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