
Final exam

Phys 137B, Fall 2016
(Dated: December 16, 2016)

Instructions: You are allowed two cheat sheets,
handwritten on the front and back. Circle final results.
Make your reasoning as clear as possible, because an un-
justified answer will yield zero points even if it is correct.
It is probably a good idea to read all problems first and
start with the easiest. If you are mostly done with a
problem except for “cosmetic” steps, do other problems
first and come back later if you have time. If you run out
of time, outline missing steps for partial credit. Likewise,
if you find an error but run out of time, explain the error
for partial credit. Good luck!

I. SCATTERING 1

A particle of mass m is scattered at a “soft sphere”
potential

V (r) =

{
−V0 r < R,
0 r > R.

(1)

1. 5 points Calculate the scattering amplitude f(θ)
using the Born approximation.

2. 10 points Calculate the s− wave scattering ampli-
tude using the partial wave method.

II. SCATTERING 2

5 points Show that the asymptotic solution

ϕ(r⃗) = eikz + f(θ)
eikr

r
(2)

satisfies the Schrödinger equation, provided that V (r⃗) →
0 faster than 1/r for r → ∞.

III. ADIABATIC VS SUDDEN CHANGE

A particle of mass m is in the ground state of an in-
finitely high square-well potential with walls at x = 0
and x = L, i.e., V = 0 for 0 < x < L and V = +∞ else-
where. At a time t = 0, the right wall which was initially
at x = L starts moving right at a constant velocity v,
expanding the potential well until it reaches x = 2L at a
time t = T .

• 5 points Assuming that the process is adiabatic,
what is the state ψ(x, t) at t = 0 and t = T? Iden-
tify the dynamic phase and the Berry phase in your
answer.

• 5 points If, instead, the expansion happens in neg-
ligible time t ≪ T , what is the (complex) ampli-
tude that the particle remains in the ground state
at t = T?

IV. 3-DIMENSIONAL WKB

In this problem, we are taking the first steps that ex-
tend the WKB method to three-dimensional problems.
For a spherically symmetric potential V (r), where r is
the radial coordinate, find a way of estimating the en-
ergy of bound states using the WKB method.

1. 5 points Make a separation of variables by writing

the wave function ψ as u(r)
r Y m

l (θ, ϕ) and show that
the differential equation for u is

u′′ − 2m

~2

[
l(l + 1)~2

2mr2
+ V (r)− E

]
u = 0

2. 5 points Solve this radial equation by inserting
u(r) = a(r)eif(r). Assuming that V (r) varies
slowly, find an explicit expression (involving an in-
tegral) for u(r). Hint: it will be necessary to ne-
glect a term in the differential equation, just as in
the one-dimensional case.

3. 5 points Use this solution and appropriate bound-
ary conditions to calculate the energy eigenvalues
in an three-dimensional, spherically symmetric po-
tential well defined by

V (r) =

{
0 r < R,

+∞ r ≥ R.

When doing so, replace l(l + 1) with (l + 1/2)2.
This is known as the Langer correction and makes
the WKB result exact for many potentials. If you
haven’t solved part 2 of this problem, assume that
this is a one-dimensional problem where r = x and
solve it.

V. TIME-DEPENDENT PERTURBATION

5 points A two-level system with states ψa and ψb,
whose energy levels differ by Eb − Ea = ~ω0, is initially
in the state ψa. It is then exposed to two short pulses,

V ′(t) = V0[δ(t) + δ(t− T )], (3)

where T > 0 is a constant. Using first-order time-
dependent perturbation theory, derive the probability
that the system is in the state ψb after the second pulse.
What choice of T maximizes the probability?
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VI. THERMAL EXPANSION

A particle of mass m is in a Morse potential

U(x) = A(e−2αx − 2e−αx). (4)

We use this as a model for the binding between the
molecules in a solid. You may recall that U(x) can be
expanded as a Taylor series:

U(x) ≈ A
[
−1 + α2x2 − α3x3 + . . .

]
. (5)

You may neglect higher-order corrections to this expan-
sion for this problem.

1. 5 points Without the x3-term, show that the sys-
tem is a harmonic oscillator having the usual states
|ψn⟩ with energies E0

n = −A+~ω0(n+1/2), where

ω0 = α
√
2A/m.

2. 5 points Derive an expression for the perturbed
states ψn ≈ ψ0

n + ψ1
n in first-order perturbation

theory and use it to calculate the expectation value
⟨ψn|x|ψn⟩. If the system is at a high temperature
T , it is likely to be found in an excited state so that
~ω0n ∼ kBT , where kB is the Boltzmann constant.
Express ⟨x⟩ as a function of the temperature T .

End of exam. There are six problems and a total of
60 points.

VII. EQUATIONS

A. Spherical Hankel and Bessel functions

A few spherical Hankel functions, h±l = jl ± inl:

h+0 =
−i
x
eix, h−0 =

i

x
e−ix

h+1 =

(
−i
x2

− 1

x

)
eix, h−1 =

(
i

x2
− 1

x

)
e−ix

They are exact solutions for the radial part of the
Schrödinger equation at V = 0. For x→ ∞,

h+ℓ → 1

x
(−i)ℓ+1eix, h−ℓ → 1

x
iℓ+1e−ix (6)

For small arguments x→ 0, we have

jℓ →
2ℓℓ!

(2ℓ+ 1)!
xℓ, nℓ → − (2ℓ)!

2ℓℓ!

1

xℓ+1
. (7)

B. Laplace operator in spherical coordinates

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2
(8)

Spherical harmonics solve the angular differential equa-
tion:

sin θ
∂

∂θ

(
sin θ

∂Y

∂θ

)
+
∂2Y

∂ϕ2
= −l(l + 1) sin2 θY. (9)

C. An integral

∫ √
a+

b2

x2
dx = ξ + b ln(x)− b ln[b(b+ ξ)], (10)

where ξ =
√
b2 + ax2.


