Final Exam

Phys 137B, Spring 2013
(Dated: May 14, 2013)

Hints: several problems may be solved without calculation, or very little calculation. If you choose to do so, justify your answer specifically by the principles/ theorems that you are following.

1. Rabi problem Here is the Rabi solution for a two-level system with a level splitting of $\hbar \omega_{0}$ driven by perturbation of the form $V e^{i \omega t}$, where $V_{a b}=\left\langle\psi_{a}\right| V\left|\psi_{b}\right\rangle=$ $V_{b a}$

$$
\begin{align*}
& c_{a}(t)=\left[\cos \left(\frac{\Omega t}{2}\right)+i \frac{\delta}{\Omega} \sin \left(\frac{\Omega t}{2}\right)\right] e^{-i \delta t / 2} \\
& c_{b}(t)=i \frac{\Omega_{R}}{\Omega} \sin \left(\frac{\Omega t}{2}\right) e^{i \delta t / 2} \tag{1}
\end{align*}
$$

where $\Omega=\sqrt{\Omega_{R}^{2}+\delta^{2}}, \Omega_{R}=V_{a b} / \hbar$ is the Rabi frequency and $\delta=\omega_{0}-\omega$ is the detuning.
a) 5 points What are the initial conditions $c_{a}(0), c_{b}(0)$ of this solution?
b) $\mathbf{1 0}$ points Find the solution for initial conditions $c_{a}(0)=0, c_{b}(0)=1$. Hint: you don't need to solve the differential equations for the two-level system from scratch. Instead, modify the above solution.
c) 10 points Your friend wants to know the solution for initial conditions $c_{a}(0)=c_{b}(0)=1 / \sqrt{2}$. Can you help? Hint: again, you don't need to solve the differential equations for the two-level system from scratch.
2. Hollow-sphere scaterring Consider s-wave scattering at the potential of a hollow sphere

$$
V(r)=\left\{\begin{array}{cc}
0 & r<r_{0} \tag{2}\\
q^{2} /(2 m) & r_{0}<r<2 r_{0} \\
0 & r>2 r_{0}
\end{array}\right.
$$

where $q>0$ is a constant. Derive the s-wave scattering cross section σ_{0}.
a) $\mathbf{1 0}$ points Find the general solution to the radial equation in the innermost region, $r<r_{0}$. It is unnecessary to normalize it.
b) $\mathbf{1 0}$ points Find the general solution in the middle region $r_{0}<r<2 r_{0}$, with two constants A and B. Find $C=A / B$ by matching boundary conditions at the inner boundary. In the rest of the problem, call this quantity C.
c) $\mathbf{1 0}$ points Find the logarithmic derivative

$$
\begin{equation*}
L_{0}=\left.\frac{r}{u_{0}(r)} \frac{d u_{0}(r)}{d r}\right|_{r=R} \tag{3}
\end{equation*}
$$

at the outer boundary as function of C.
d) $\mathbf{1 0}$ points Find the s-wave scattering cross section σ_{0}. Express it as function of L_{0}.
e) $\mathbf{1 0}$ points Calculate the differential cross section $d \sigma / d \Omega$ for the same potential in the Born approximation for large particle energies.

3. Small scatterer (20 points) Consider a potential

 well$$
V(r)=\left\{\begin{array}{cc}
0 & r>R \tag{4}\\
-V_{0} & r \leq R
\end{array}\right.
$$

where $V_{0}>0$. A particle of mass m and wavenumber k scatters. Assume that $R \rightarrow 0$ in such a way that $w \equiv R \sqrt{2 m V_{0}} / \hbar$ is constant. In the partial wave method, show that of the partial scattering amplitudes

$$
\begin{equation*}
a_{l}=-\frac{1}{i k} \frac{L_{l} j_{l}(x)-x j_{l}^{\prime}(x)}{L_{l} h_{l}^{(1)}(x)-x\left(h_{l}^{(1)}\right)^{\prime}(x)}, \quad x=k R \tag{5}
\end{equation*}
$$

where L_{l} are the logarithmic derivatives at $r=R$, only a_{0} is relevant and proportional to $1 / k$.
4. Geometric phase ($\mathbf{1 0}$ points) A particle of mass m is in the second excited state $n=2$ of a harmonic oscillator potential $V=\frac{1}{2} m \omega^{2} x^{2}$. What is the geometric phase γ_{2} that the state accumulates when ω is adiabatically ramped down to half its initial value?

I. SPECIAL FUNCTIONS

The spherical Bessel, Neumann, and Hankel functions of the first kind, respectively, are

$$
\begin{align*}
j_{0}(x) & =\frac{\sin x}{x} \tag{6}\\
n_{0}(x) & =-\frac{\cos x}{x} \tag{7}\\
h_{0}^{(1)}(x) & =j_{0}(x)+i n_{0}(x)=-\frac{e^{i x}}{x} \tag{8}
\end{align*}
$$

