Physics 137 B Spring 2012 - Midterm 1

February 26, 2012

1. (10 points) An uncharged particle of mass m is placed in a gravitational potential $V(z)=m g z$ for $z>0$, where $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ is the acceleration of free fall and z is the vertical coordinate. For $z<0$, we assume $V(z)=+\infty$, i.e., the particle has zero probability of getting to $z<0$. Using the WKB method, find the energy levels of this system. Instruction: find the turning point z_{E} for a given energy E and then consider the boundary conditions at $z=0$.
2. (10 points) A particle of mass m is enclosed in a one-dimensional box (square well potential) of length a :

$$
U(x)=\left\{\begin{array}{cc}
0 & 0<x<a \\
\infty & \text { otherwise }
\end{array}\right.
$$

As you know, the normalized wave functions for this potential are $\psi_{n}(x)=$ $\sqrt{2 / a} \sin (n \pi x / a)$ and the energy levels are $E_{n}=(n \pi \hbar)^{2} /\left(2 m a^{2}\right)$. Now consider a small modification of the potential by $V(x)=V_{0} \sin (\pi x / a)$. Calculate the energy level shift in first order perturbation theory.
3. The potential between two atoms forming a molecule can be approximated by a Morse potential $U(r)=D_{e}\left(e^{-2 a\left(r-r_{e}\right)}-2 e^{-a\left(r-r_{e}\right)}\right)$ (see the figure), where r is the distance between the atoms, r_{e} is the distance at which the potential reaches its minimum of $-D_{e}$, and a controls the 'width' of the potential (the smaller a is, the larger the well). Consider this a one-dimensional problem.

1. (5 points) Consider oscillations of small amplitude around the minimum of the potential. What is the (angular) frequency ω_{0} of the oscillations? The masses of the atoms are m_{1} and m_{2}, respectively. What are the energy levels E_{ν} for a quantum number ν ?
2. (5 points) Now consider the change of the ground state $(n=0)$ and first excited state $(n=1)$ energy, considering the fact that the potential is only approximately quadratic. Treat the difference of $U(r)$ and the harmonic approximation in first-order perturbation theory. The wave functions of the simple harmonic oscillator are $\psi_{0}(x)=(\alpha / \pi)^{1 / 4} e^{-y^{2}}$ and $\psi_{1}(x)=$ $(\alpha / \pi)^{1 / 4} \sqrt{2} y e^{-y^{2} / 2}$, where $\alpha=m \omega / \hbar$ and $y=\sqrt{\alpha} x$.
3. (10 points) Improve your estimate of the ground state energy by using the width parameter α of the ground-state wave function as a variational parameter. If you obtain a cubic equation for the value of α that minimizes the ground state energy, you may let it stand without solving it.

Integrals: We give you the following integrals:

$$
\begin{gathered}
\int \sqrt{1-\frac{z}{z_{E}}} d z=-\frac{2}{3}\left(1-\frac{z}{z_{E}}\right)^{3 / 2} z_{E} \\
\int_{0}^{a} \sin ^{2}\left(\frac{n \pi x}{a}\right) \sin \left(\frac{\pi x}{a}\right) d x=\frac{4 a n^{2}}{\left(4 n^{2}-1\right) \pi} \\
\int_{-\infty}^{\infty} x^{n} e^{-a x^{2}} d x=\left\{\begin{array}{cc}
a^{-(1+n) / 2} \Gamma\left(\frac{1+n}{2}\right) & n \text { even } \\
0 & n \text { odd }
\end{array}\right.
\end{gathered}
$$

