Physics 137B, Spring 2016 Midterm 1 Good luck!

1 Little calculation needed

a. [5 points] Two neutrons (spin $1 / 2$) are in the ground state of a harmonic oscillator potential. Neglect any interactions between them. What can you say about the orientation of their spin?
b. [5 points] What happens to the expectation value $\left\langle x^{2}\right\rangle$ averaged over all particles when a third neutron is added, assuming it takes the lowest available energy level?
c. [5 points] A particle is in the ground state of a harmonic oscillator when a potential $H^{\prime}=$ αx (a constant weak force) is applied. Does the energy of the system go up or down?
d. [5 points] Calculate the correction $\psi_{0}^{(1)}$ to the ground state in first-order perturbation theory for the system in part c.

2 Yukawa potential

Consider a hydrogen atom in a state $|n, l, m\rangle$, neglecting fine structure or hyperfine structure. It has been suggested ${ }^{1}$ that the Higgs field leads to an additional potential between the proton and the electron of the form

$$
V(r)=A \frac{e^{-r / \lambda}}{r}
$$

where A and λ are constants. This Yukawa potential is typical for interactions mediated by massive particles.
a. [10 points] Use first-order, nondegenerate perturbation theory to calculate the energy change for the ground state $|1,0,0\rangle$.
b. [5 points] Justify the use of nondegenerate perturbation theory in this problem even for excited states of hydrogen, despite their degeneracy.

[^0]
3 Degenerate perturbation theory

Consider a system with three eigenstates $\left|\psi_{j}\right\rangle$ ($j=1,2,3$). The Hamiltonian of this system can be written as

$$
\left\langle\psi_{i}\right| H_{0}\left|\psi_{j}\right\rangle=\left[\begin{array}{ccc}
\epsilon_{1} & 0 & 0 \\
0 & \epsilon_{23} & 0 \\
0 & 0 & \epsilon_{23}
\end{array}\right]
$$

where $\epsilon_{1}<\epsilon_{23}$ and $\left|\psi_{2}\right\rangle$ and $\left|\psi_{3}\right\rangle$ are degenerate in energy. The system is now perturbed such that the new Hamiltonian can be written as $H=$ $H_{0}+H_{1}$ where

$$
\left\langle\psi_{i}\right| H_{1}\left|\psi_{j}\right\rangle=\left[\begin{array}{ccc}
\tau & \Delta & -i \sigma \\
\Delta & \delta & i \gamma \\
i \sigma & -i \gamma & \delta
\end{array}\right]
$$

and $\Delta, \delta, \sigma, \gamma$, and τ are all real.
(a) [5 points] Determine the correct 0th order wave functions for the two degenerate states $(j=2,3)$ that you would use for degenerate perturbation theory. Denote them $\left|\psi_{23 a}\right\rangle$ and $\left|\psi_{23 b}\right\rangle$.
(b) [5 points] Determine the 1st correction to the energy of $\left|\psi_{23 a}\right\rangle$.
(c) [5 points] Determine the 2nd correction to the energy of $\left|\psi_{23 a}\right\rangle$.

Useful equations

Hydrogen ground state wave function

$$
\psi_{100}(r, \theta \phi)=\frac{1}{\sqrt{\pi a_{0}^{3}}} e^{-r / a_{0}}
$$

An integral

$$
\int r e^{-\alpha r} d r=-\frac{1+\alpha r}{\alpha^{2}} e^{-\alpha r}
$$

Harmonic oscillator:

$$
\begin{gathered}
a=\frac{\omega m x+i p}{\sqrt{2 \omega m \hbar}}, \quad a^{\dagger}=\frac{\omega m x-i p}{\sqrt{2 \omega m \hbar}}, \quad\left[a, a^{\dagger}\right]=1, \\
H=\hbar \omega(\hat{n}+1 / 2), \quad \hat{n}=a^{\dagger} a, \quad \hat{n}|n\rangle=n|n\rangle \\
a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle, \quad a|n\rangle=\sqrt{n}|n-1\rangle .
\end{gathered}
$$

[^0]: ${ }^{1}$ C. Delaunay, R. Ozeri, G. Perez, and Y. Soreq, Probing The Atomic Higgs Force. e-print: arXiv:1601.05087

