MT 2

Phys 137B, Spring 2013
(Dated: April 4, 2013)
v2: Second line of 5 a : corrected $2 / 3 \rightarrow 2 / 9$

1) 20 points Using the WKB method, find the bound state energies E_{n} of a particle of mass m in a V-shaped potential well

$$
V(x)=\left\{\begin{array}{cc}
-V_{0}(1-|x / a|) & -a<x<a \tag{1}\\
V(x)=0 & \text { otherwise }
\end{array}\right.
$$

$V_{0}>0$ and $a>0$ are constants (Fig. 1). What's the energy of the highest bound state?

FIG. 1. V-shaped potential.
2) 30 points Using the WKB method, find the bound state energies for a particle of mass m bouncing up and down atop a surface in the gravitational field. For a vertical coordinate $z>0$, let the potential be purely gravitational: $V=m g z$, where g is the acceleration of free fall. For $z<0$, assume a repulsive quadratic potential $V=\frac{1}{2} k z^{2}$, where $k>0$ is a constant. All in all,

$$
V=\left\{\begin{array}{cc}
m g z & z>0 \tag{2}\\
+\frac{1}{2} k z^{2} & z \leqslant 0
\end{array}\right.
$$

(See Fig. 2). Calculate the bound energy levels E_{n} and the corresponding WKB wave functions. Give an explicit result for the first two E_{n} as frequencies (in Hz) $\nu_{n}=E_{n} / h$ for $g=9.8 \mathrm{~m} / \mathrm{s}^{2}, m=1.66 \times 10^{-27} \mathrm{~kg}$ (approximately one atomic mass unit), and $k=1 \times 10^{-19} \mathrm{~N} / \mathrm{m}$.

FIG. 2. Potential of the quantum bouncer.
3) A mass m on a spring of spring constant k forms a one-dimensional harmonic oscillator with resonance frequency $\omega_{0}=\sqrt{k / m}$ (Fig. 3). The system is initially in the ground state $|0\rangle$. Which of the following strategies will allow bringing the oscillator into the state $|1\rangle$? In each case, calculate the probability of finding the system in the state $|1\rangle$ at a time T after the perturbation has initially been switched on. Use time-dependent perturbation theory. It's probably a good idea to use ladder operators.

FIG. 3. Mass on a spring. Except for part (b), assume that the spring is attached to a rigid point on the left hand side, so that $x_{0}=0$.
(a) $\mathbf{1 0}$ points Application of a small force $F(t)=$ $F_{0} \cos \omega t$ to the particle
(b) $\mathbf{1 0}$ points Modulating the point x_{0} (see Fig. 3) at which the spring is attached according to $x_{0}=A \cos \omega t$ with a small amplitude A.
(c) $\mathbf{1 0}$ points Modulating the spring constant $k \rightarrow$ $k_{0}+k^{\prime} \cos \omega t$, where $k^{\prime}>0$ is a constant. You may assume that $k^{\prime} \ll k$ if that helps.
(d) $\mathbf{1 0}$ points Modulating the mass according to $m=$ $m_{0}+m^{\prime} \cos \omega t$. You may assume that $m^{\prime} \ll m$.
(e) $\mathbf{1 0}$ points Application of a sudden force $F(t)=F_{0} \delta(t)$.
4) Consider a two-level system with an energy difference $\hbar \omega_{0}$ driven sinusoidally by a perturbation $H^{\prime}=$ $V_{a b} \cos \omega t$, where we denote $V_{a b}=\hbar \Omega_{R}$ and $\delta=\omega_{0}-\omega$. Assume $|\delta| \ll \omega_{0}$. The system is in the ground state before a perturbation is applied for a time T. You're trying to bring it to the excited state with at least $2 / 9$ probability, i.e., $\left|c_{b}\right|^{2} \geqslant 2 / 9$
(a) 5 points What is the maximum value of δ that allows reaching $\left|c_{b}\right|^{2} \geqslant 2 / 9$, provided that for each δ, the optimum T can be chosen? 5 bonus points: Illustrate your answer using the Bloch sphere. (Beware that the definition of Ω_{R} here and in my Bloch sphere notes used there for convenience in the derivation - disagree by a factor of 2)
(b) 5 points What is the maximum value of δ, provided that T is fixed at the value that leads to $\left|c_{b}\right|^{2}=1$ for $\delta=0$?

