Phys 137B, Spring 2013 (Dated: April 4, 2013)

v2: Second line of 5a: corrected $2/3 \rightarrow 2/9$

1) **20 points** Using the WKB method, find the bound state energies E_n of a particle of mass m in a V-shaped potential well

$$V(x) = \begin{cases} -V_0(1 - |x/a|) & -a < x < a \\ V(x) = 0 & \text{otherwise.} \end{cases}$$
 (1)

 $V_0 > 0$ and a > 0 are constants (Fig. 1). What's the energy of the highest bound state?

FIG. 1. V-shaped potential.

2) **30 points** Using the WKB method, find the bound state energies for a particle of mass m bouncing up and down atop a surface in the gravitational field. For a vertical coordinate z>0, let the potential be purely gravitational: V=mgz, where g is the acceleration of free fall. For z<0, assume a repulsive quadratic potential $V=\frac{1}{2}kz^2$, where k>0 is a constant. All in all,

$$V = \begin{cases} mgz & z > 0 \\ +\frac{1}{2}kz^2 & z \leqslant 0 \end{cases}$$
 (2)

(See Fig. 2). Calculate the bound energy levels E_n and the corresponding WKB wave functions. Give an explicit result for the first two E_n as frequencies (in Hz) $\nu_n = E_n/h$ for $g = 9.8 \text{m/s}^2$, $m = 1.66 \times 10^{-27} \text{ kg}$ (approximately one atomic mass unit), and $k = 1 \times 10^{-19} \text{ N/m}$.

FIG. 2. Potential of the quantum bouncer.

3) A mass m on a spring of spring constant k forms a one-dimensional harmonic oscillator with resonance frequency $\omega_0 = \sqrt{k/m}$ (Fig. 3). The system is initially in the ground state $|0\rangle$. Which of the following strategies will allow bringing the oscillator into the state $|1\rangle$? In each case, calculate the probability of finding the system in the state $|1\rangle$ at a time T after the perturbation has initially been switched on. Use time-dependent perturbation theory. It's probably a good idea to use ladder operators.

FIG. 3. Mass on a spring. Except for part (b), assume that the spring is attached to a rigid point on the left hand side, so that $x_0 = 0$.

- (a) **10 points** Application of a small force $F(t) = F_0 \cos \omega t$ to the particle
- (b) **10 points** Modulating the point x_0 (see Fig. 3) at which the spring is attached according to $x_0 = A \cos \omega t$ with a small amplitude A.
- (c) **10 points** Modulating the spring constant $k \to k_0 + k' \cos \omega t$, where k' > 0 is a constant. You may assume that $k' \ll k$ if that helps.
- (d) **10 points** Modulating the mass according to $m = m_0 + m' \cos \omega t$. You may assume that $m' \ll m$.
- (e) **10 points** Application of a sudden force $F(t) = F_0 \delta(t)$.
- 4) Consider a two-level system with an energy difference $\hbar\omega_0$ driven sinusoidally by a perturbation $H'=V_{ab}\cos\omega t$, where we denote $V_{ab}=\hbar\Omega_R$ and $\delta=\omega_0-\omega$. Assume $|\delta|\ll\omega_0$. The system is in the ground state before a perturbation is applied for a time T. You're trying to bring it to the excited state with at least 2/9 probability, i.e., $|c_b|^2\geqslant 2/9$
- (a) **5 points** What is the maximum value of δ that allows reaching $|c_b|^2 \ge 2/9$, provided that for each δ , the optimum T can be chosen? **5 bonus points**: Illustrate your answer using the Bloch sphere. (Beware that the definition of Ω_R here and in my Bloch sphere notes used there for convenience in the derivation disagree by a factor of 2)
- (b) **5 points** What is the maximum value of δ , provided that T is fixed at the value that leads to $|c_b|^2 = 1$ for $\delta = 0$?