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1. Consider a drop of liquid falling through air. The drag force can cause the drop to break up.
Suppose the force (Fd) to break up the drop depends on the drop’s density (ρ), speed (V ), diameter
(D) and surface tension (σ). (Recall σ has dimensions force per distance.)

(a) Determine the dimensionless parameters characterizing this problem. Choose V,D, ρ as the
repeating variables.

(b) Invoke the Buckingham Pi theorem to write a general functional relationship between the
obtained parameters.

(c) Suppose Fd = 0.01N for a water drop with diameter D translating with speed V1 = 3m/s.
Determine Fd for a drop of the same size translating at twice the speed V2 = 6m/s. (ρ is
constant)
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2. 2D steady inviscid flow near a corner can be modeled with the potential function φ(r, θ) = rn cos(nθ)
in polar coordinates, where n = π

α
> 1, r ≥ 0 and 0 ≤ θ ≤ α. (Note: Relevant relations in

cylindrical coordinates are given in the equation sheet).

(a) Find the velocity vector field ~V = ur~er + uθ~eθ. Locate the stagnation point.

(b) Is this flow irrotational? (Justify)

(c) Is this flow incompressible? (Justify)

(d) If the stagnation pressure PO is given, find the pressure PA at point A. Assume density ρ is
given and gravity is negligible.

α

θ = 0
O

A : (r = 1, θ = π
2
)
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3. A viscous oil film of outer radius ro uniformly drains down the side of a stationary vertical rod of
radius ri due to gravity. Assume the flow is steady and incompressible. The air surrounding the
oil imparts no shear stress. The rod can be considered infinitely long.

(a) Write down (justified) assumptions that enable you to reduce the continuity equation and
Navier-Stokes equation. (Or write down “as needed” when completing parts 3b and 3c below).

(b) Using the continuity equation in cylindrical coordinates (see equation sheet), show that the
flow is fully developed (i.e., ∂uz

∂z
= 0). Density is constant.

(c) Using Navier-Stokes equation in cylindrical coordinates (see equation sheet), simplify each
component equation. Determine what r and θ equations imply regarding pressure, and show
the z equation reduces to an ODE. You do not need to copy the full equations; rather you
can simplify the ones on the equation sheet and write the result here (terms set to zero must
match your assumptions above).

(d) Integrate the ODE derived above to obtain an expression for uz(r). State appropriate boundary
condition(s) to solve for integration constants. (You do not need to solve for them but can if
you have time.)

Rod

Oil film µ, ρ

ri

ro

Air µair ≈ 0

Patm

z

r
θ

uz

g

ur

uθ

Flow
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Summary of Equations:320 Chapter 6 ■ Differential Analysis of Fluid Flow

Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Study

Guide for Fundamentals of Fluid Mechanics, by Munson et al.
(© 2009 John Wiley and Sons, Inc.).

Review Problems

Stream function (6.37)

Euler’s equations of motion (6.51a)

(6.51b)

(6.51c)

Velocity potential (6.65)
Laplace’s equation (6.66)
Uniform potential flow

Source and sink

Vortex

Doublet

The Navier–Stokes equations1x direction2
(6.127a)1y direction2
(6.127b)1z direction2
(6.127c)
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Cylindrical Coordinate relations:

Potential function:

ur =
∂φ

∂r
, uθ =

1

r

∂φ

∂θ

Stream function:

ur =
1

r

∂ψ

∂θ
, uθ = −

∂ψ

∂r
.

Gradient:

∇φ =
∂φ

∂r
~er +

1

r

∂φ

∂θ
~eθ +

∂φ

∂z
~ez.

Divergence:

∇ · ~V =
1

r

∂(rur)

∂r
+

1

r

∂uθ
∂θ

+
∂uz
∂z

.

Curl:

∇× ~V =
1

r

∣∣∣∣∣∣∣∣∣∣
~er r~eθ ~ez

∂
∂r

∂
∂θ

∂
∂z

ur ruθ uz

∣∣∣∣∣∣∣∣∣∣
.

Continuity equation in cylindrical coordinates:

∂ρ

∂t
+

1

r

∂(ρrur)

∂r
+

1

r

∂(ρuθ)

∂θ
+
∂(ρuz)

∂z
= 0.

Navier-Stokes equation in cylindrical coordinates:

∂ur
∂t

+ ur
∂ur
∂r

+
uθ
r

∂ur
∂θ
− u2

θ

r
+ uz

∂ur
∂z

= −1

ρ

∂P

∂r
+ gr + ν

[
1

r

∂

∂r

(
r
∂ur
∂r

)
− ur
r2

+
1

r2
∂2ur
∂θ2

− 2

r2
∂uθ
∂θ

+
∂2ur
∂z2

]
,

∂uθ
∂t

+ ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

+
uruθ
r

+ uz
∂uθ
∂z

= − 1

ρr

∂P

∂θ
+ gθ + ν

[
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r

∂

∂r

(
r
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)
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+
1

r2
∂2uθ
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]
,
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