University of California, Berkeley
Mechanical Engineering
ME 106, Fluid Mechanics
ODK/Midterm 3, Fall 2015

Last name:
First name:
Student ID:
Discussion:

Notes:

- You solution procedure should be legible and complete for full credit (use scratch paper as needed).

Question	Grade
1	
2	
3	
Total:	

1. Consider a drop of liquid falling through air. The drag force can cause the drop to break up. Suppose the force $\left(F_{d}\right)$ to break up the drop depends on the drop's density (ρ), speed (V), diameter (D) and surface tension (σ). (Recall σ has dimensions force per distance.)
(a) Determine the dimensionless parameters characterizing this problem. Choose V, D, ρ as the repeating variables.
(b) Invoke the Buckingham Pi theorem to write a general functional relationship between the obtained parameters.
(c) Suppose $F_{d}=0.01 \mathrm{~N}$ for a water drop with diameter D translating with speed $V_{1}=3 \mathrm{~m} / \mathrm{s}$. Determine F_{d} for a drop of the same size translating at twice the speed $V_{2}=6 \mathrm{~m} / \mathrm{s}$. (ρ is constant)
2. 2D steady inviscid flow near a corner can be modeled with the potential function $\phi(r, \theta)=r^{n} \cos (n \theta)$ in polar coordinates, where $n=\frac{\pi}{\alpha}>1, r \geq 0$ and $0 \leq \theta \leq \alpha$. (Note: Relevant relations in cylindrical coordinates are given in the equation sheet).
(a) Find the velocity vector field $\vec{V}=u_{r} \vec{e}_{r}+u_{\theta} \vec{e}_{\theta}$. Locate the stagnation point.
(b) Is this flow irrotational? (Justify)
(c) Is this flow incompressible? (Justify)
(d) If the stagnation pressure P_{O} is given, find the pressure P_{A} at point A. Assume density ρ is given and gravity is negligible.

3. A viscous oil film of outer radius r_{o} uniformly drains down the side of a stationary vertical rod of radius r_{i} due to gravity. Assume the flow is steady and incompressible. The air surrounding the oil imparts no shear stress. The rod can be considered infinitely long.
(a) Write down (justified) assumptions that enable you to reduce the continuity equation and Navier-Stokes equation. (Or write down "as needed" when completing parts 3b and 3c below).
(b) Using the continuity equation in cylindrical coordinates (see equation sheet), show that the flow is fully developed (i.e., $\frac{\partial u_{z}}{\partial z}=0$). Density is constant.
(c) Using Navier-Stokes equation in cylindrical coordinates (see equation sheet), simplify each component equation. Determine what r and θ equations imply regarding pressure, and show the z equation reduces to an ODE. You do not need to copy the full equations; rather you can simplify the ones on the equation sheet and write the result here (terms set to zero must match your assumptions above).
(d) Integrate the ODE derived above to obtain an expression for $u_{z}(r)$. State appropriate boundary condition(s) to solve for integration constants. (You do not need to solve for them but can if you have time.)

Summary of Equations:

The Navier-Stokes equations
(x direction)

$$
\rho\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}\right)=-\frac{\partial p}{\partial x}+\rho g_{x}+\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right) \quad \text { (6.127a) }
$$

(y direction)

$$
\rho\left(\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}\right)=-\frac{\partial p}{\partial y}+\rho g_{y}+\mu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}\right) \quad \text { (6.127b) }
$$

(z direction)

$$
\rho\left(\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}\right)=-\frac{\partial p}{\partial z}+\rho g_{z}+\mu\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}+\frac{\partial^{2} w}{\partial z^{2}}\right)
$$

Cylindrical Coordinate relations:

Potential function:

$$
u_{r}=\frac{\partial \phi}{\partial r}, \quad u_{\theta}=\frac{1}{r} \frac{\partial \phi}{\partial \theta}
$$

Gradient:

$$
\nabla \phi=\frac{\partial \phi}{\partial r} \vec{e}_{r}+\frac{1}{r} \frac{\partial \phi}{\partial \theta} \vec{e}_{\theta}+\frac{\partial \phi}{\partial z} \vec{e}_{z} . \quad \nabla \cdot \vec{V}=\frac{1}{r} \frac{\partial\left(r u_{r}\right)}{\partial r}+\frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta}+\frac{\partial u_{z}}{\partial z}
$$

Stream function:
$u_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta}, \quad u_{\theta}=-\frac{\partial \psi}{\partial r}$.

Curl:

$$
\left.\nabla \times \vec{V}=\frac{1}{r} \begin{array}{ccc}
\vec{e}_{r} & r \vec{e}_{\theta} & \vec{e}_{z} \\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\
u_{r} & r u_{\theta} & u_{z}
\end{array} \right\rvert\, .
$$

Continuity equation in cylindrical coordinates:

$$
\frac{\partial \rho}{\partial t}+\frac{1}{r} \frac{\partial\left(\rho r u_{r}\right)}{\partial r}+\frac{1}{r} \frac{\partial\left(\rho u_{\theta}\right)}{\partial \theta}+\frac{\partial\left(\rho u_{z}\right)}{\partial z}=0 .
$$

Navier-Stokes equation in cylindrical coordinates:

$$
\begin{aligned}
\frac{\partial u_{r}}{\partial t}+u_{r} \frac{\partial u_{r}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial u_{r}}{\partial \theta}-\frac{u_{\theta}^{2}}{r}+u_{z} \frac{\partial u_{r}}{\partial z} & =-\frac{1}{\rho} \frac{\partial P}{\partial r}+g_{r}+\nu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u_{r}}{\partial r}\right)-\frac{u_{r}}{r^{2}}+\frac{1}{r^{2}} \frac{\partial^{2} u_{r}}{\partial \theta^{2}}-\frac{2}{r^{2}} \frac{\partial u_{\theta}}{\partial \theta}+\frac{\partial^{2} u_{r}}{\partial z^{2}}\right] \\
\frac{\partial u_{\theta}}{\partial t}+u_{r} \frac{\partial u_{\theta}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial u_{\theta}}{\partial \theta}+\frac{u_{r} u_{\theta}}{r}+u_{z} \frac{\partial u_{\theta}}{\partial z} & =-\frac{1}{\rho r} \frac{\partial P}{\partial \theta}+g_{\theta}+\nu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u_{\theta}}{\partial r}\right)-\frac{u_{\theta}}{r^{2}}+\frac{1}{r^{2}} \frac{\partial^{2} u_{\theta}}{\partial \theta^{2}}+\frac{2}{r^{2}} \frac{\partial u_{r}}{\partial \theta}+\frac{\partial^{2} u_{\theta}}{\partial z^{2}}\right], \\
\frac{\partial u_{z}}{\partial t}+u_{r} \frac{\partial u_{z}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial u_{z}}{\partial \theta}+u_{z} \frac{\partial u_{z}}{\partial z} & =-\frac{1}{\rho} \frac{\partial P}{\partial z}+g_{z}+\nu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u_{z}}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u_{z}}{\partial \theta^{2}}+\frac{\partial^{2} u_{z}}{\partial z^{2}}\right] .
\end{aligned}
$$

