
Optional. Mark along the line to show your feelings Before exam: [____________________].

 on the spectrum between and . After exam: [____________________].

UC Berkeley – Computer Science

CS61B: Data Structures

Midterm #2, Spring 2017

This test has 8 questions worth a total of 120 points, and is to be completed in 110 minutes. The exam is
closed book, except that you are allowed to use two double sided written cheat sheets (front and back).
No calculators or other electronic devices are permitted. Give your answers and show your work in the
space provided. Write the statement out below in the blank provided and sign. You may do this

before the exam begins.

“I have neither given nor received any assistance in the taking of this exam.”

These solutions are in Beta. Probably there are no mistakes. We may add more verbose explanations to

particularly popular questions.

 Signature: ___________________________

Points # Points

0 0.55 5 5.25

1 11.5 6 12.5

2 15.2 7 18

3 12 8 25

4 20

 TOTAL 120

Name: __________________________

SID: ___________________________

Three-letter Login ID: _________

Login of Person to Left: _______

Login of Person to Right: ______

Exam Room: _____________________

Tips:

 There may be partial credit for incomplete answers. Write as much of the solution as you can,
but bear in mind that we may deduct points if your answers are much more complicated than
necessary.

 There are a lot of problems on this exam. Work through the ones with which you are

comfortable first. Do not get overly captivated by interesting design issues or complex

corner cases you’re not sure about.
 Not all information provided in a problem may be useful.

 Unless otherwise stated, all given code on this exam should compile. All code has been compiled
and executed before printing, but in the unlikely event that we do happen to catch any bugs in the
exam, we’ll announce a fix. Unless we specifically give you the option, the correct answer is not
‘does not compile.’

 ○ indicates that only one circle should be filled in.

 indicates that more than one box may be filled in.

 For answers which involve filling in a ○ or , please fill in the shape completely.

 UC BERKELEY
Login: _______

 2

 If the exam says “write only one statement per line”, a for loop counts as one statement.

CS61B MIDTERM, SPRING 2017

Login: _______

 3

0. So it begins (0.55 points). Write your name and ID on the front page. Write the exam room. Write
the IDs of your neighbors. Write the given statement. Sign when you’re done with the exam. Write your
login in the corner of every page. Enjoy your free 0.55 points .

A chicken pesto calzone from Gypsy’s just for you.™

 UC BERKELEY
Login: _______

 4

1. Traversin (11.5 points).

a) (6 pts) For the graph below, give the DFS preorder, postorder, and BFS order traversals starting from
vertex 9. The BFS order is the order in which vertices are enqueued. Assume ties are broken in
numerical order (i.e. the edge 15 16 would be considered before 15 17).

DFS Preorder: 9, 0, 1, 6, 5, 2, 7

DFS Postorder: 0, 2, 7, 5, 6, 1, 9

BFS Order: 9, 0, 1, 2, 6, 7, 5

b) (4 pts) Suppose we have a min heap of 7 unique items and we want to print the values of the heap in

increasing order. For which of our standard tree traversals will we get the values of the heap in
increasing order if we print when we visit a node? Fill in the bubbles completely.

Preorder ○ Never ● Sometimes ○ Always

Inorder ● Never ○ Sometimes ○ Always

Postorder ● Never ○ Sometimes ○ Always

Level order ○ Never ● Sometimes ○ Always

c) (1.5 pts) Draw a tree with 5 nodes for which the preorder traversal is the reverse of the inorder
traversal, and for which all values are unique. Or if this is not possible, simply write ”Impossible”.

Any tree that where all nodes only have left children is fine.

CS61B MIDTERM, SPRING 2017

Login: _______

 5

2. An Operational Understanding (15.2 points).
a. Consider the tree on the left where greek letters represent numerical values. In the boxes to the right,
shade all values that might match the text. Assume all values are unique. For BSTs, assume left items
are less than. When treating the tree like a graph, assume nothing about the order of adjacency lists.
 Fill in the boxes completely.

 MinHeap, largest item α β π θ ω

MinHeap, smallest
item

α β π θ ω

BST, largest item α β π θ ω

BST, smallest item α β π θ ω

MinHeap, median item α β π θ ω

BST, median item α β π θ ω

MinHeap, new root
after deleteMin

α β π θ ω

BST, new root after

Hibbard1 deletion of α
α β π θ ω

MinHeap, root after
inserting new item φ

α β π θ ω φ

BST, root after
inserting new item φ

α β π θ ω φ

Last item dequeued

running BFS from ω
α β π θ ω

b. Suppose we have an initially empty hash map (as discussed in lecture) that maps a year to a famous
person born that year. Suppose that the hash code of the year is given by the sum of the first and last
digits, e.g. hashCode(1569) would be 10. Draw the hash table after calling put with the following
key/value pairs. Assume that each bucket is a list, and that there is no resizing. The first one has been
completed for you. Assume new items are placed at the end of the list.

K/V pairs: [1569 / Jahangir], [155 / Cao], [1107 / Dandolo], [1737 / Paine], [713 / Stephen],
 [1048 / Khayyam], [1737 / Hancock]

1 Hibbard deletion is the deletion technique from lecture where we arbitrarily take one of two values to be the new

root.

 UC BERKELEY
Login: _______

 6

3. Weighted Quick Union (12 points)

a. (2 pts) Suppose we have a weighted quick union object. What calls to connect(a, b) produce the
following trees? Assume that each WQU starts with all items disconnected. Or fill in the “Impossible”
option if the given tree is impossible. Assume that in case of a tie, the root of the left argument is placed
below the root of the right argument.

connect(_______, ________)

connect(_______, ________)

● Impossible

connect(2, 0)

connect(4, 0)

connect(5, 3)

connect(3, 0)

connect(6, 0)

○ Impossible

b. (4 pts) Suppose we add a new operation undo(a, b) that undoes an earlier Disjoint Sets connect

operation. If connect(a, b) has never been called, then this method has no effect. For each of the
implementations of Disjoint Sets, mark the corresponding box if it is impossible to add the undo
operation without adding additional data structures (i.e. instance variables) to that implementation.

Quick Union Quick Find Weighted Quick Union(WQU) WQU with Path Compression

c. (6 pts) Suppose we use a graph instead of a quick union tree to solve the disjoint sets problem.
Assume we implement the connect(a, b) and isConnected(a, b) operations using a graph

represented as an adjacency list with no duplicates allowed. Assume that we implement connect using
addEdge, and isConnected using DFS with a marked array, where DFS terminates early if a
connection is detected. Let N be the number of nodes in the graph, and let M be the total number of calls
to either the connect or isConnected methods. For example, if we call connect 37 times, then
isConnected 13 times, then connect 20 times, then M=70.

What will be the worst case runtime of any single call to connect(a, b)?

○Θ(1) ○Θ(log N) ○Θ(log M) ●Θ(N) ●Θ(M) ●Θ(N + M) ○Θ(NM) ○Θ(N + M log* M)

What will be the worst case runtime of any single call to isConnected(a, b)?

○Θ(1) ○Θ(log N) ○Θ(log M) ●Θ(N) ●Θ(M) ●Θ(N + M) ○Θ(NM) ○Θ(N + M log* M)

CS61B MIDTERM, SPRING 2017

Login: _______

 7

Explanation: We accepted all three answers above as reasonable for both problems because there was
some ambiguity about how you might interpret “the worst case”.

The first question essentially boiled down to “If we add M edges to a graph with N vertices, what is the
worst case runtime for addEdge?” and the second question is essentially just “If we have a graph with N
vertices and M edges, what is the worst case runtime for DFS?”

While these might seem straightforward, consider the following question: We know that DFS is Θ(V+E)
in the worst case, but is it also Θ(V) in the worst case? Certainly as V grows, the size of our marked
array will also grow, so a plot of runtime vs. V will indeed be linear. Since we haven’t discussed such
ambiguities in class and this can be quite confusing, we opted to accept any of these three answers in the
spirit of this ambiguity.

 UC BERKELEY
Login: _______

 8

4. Asymptotics (20 points).

a) (7 pts) For each code block below, fill in the blank(s) so that the function has the desired runtime. Do
not use any commas. If the answer is impossible, just write “impossible” in the blank.

public static void f1(int N) { // desired runtime: Θ(N)
 for (int i = 1; i < N; i += 1 { System.out.println hi ; }
}

public static void f2(int N) { // desired runtime Θ(log N)
 for (int i = 1; i < N; i *= 2 { System.out.println hi ; }
}

public static void f3(int N) { // desired runtime Θ(1)
 for (int i = 1; i < N; i += N { System.out.println hi ; }
}

b) (8 pts) Give the runtime of the following functions in Θ or O notation as requested. Your answer
should be as simple as possible with no unnecessary leading constants or lower order terms. For f5, your
bound should be as tight as possible (so don’t just put O(NNM!) or similar for the second answer). Don’t
spend too much time on these!

Θ 𝑁2 log𝑁 public static void f4(int N) {
 if (N == 0) { return; }
 f4(N / 2);
 f4(N / 2);
 f4(N / 2);
 f4(N / 2);
 g(N); // runs in Θ(N2) time
 }

O 𝑁 public static void f5(int N, int M) {
 if (N < 10) { return; }
 for (int i = 0; i <= N % 10; i++) {
 f5(N / 10, M / 10);
 System.out.println(M);
 }
 }

c) (0 pts) This mostly subterranean building, designed by I.M. Pei, cost more than $250,000,000 to
construct, and was built by a small religious group that believes that by “building architectural
masterpieces in remote locations, they are restoring the Earth's balance”.

d) (5 pts) Suppose we write a method to assign careers to a list of puppies, defined below:

CS61B MIDTERM, SPRING 2017

Login: _______

 9

public IntTree assignPupJobs(List<Puppy> puppies, List<Job> jobs)

Suppose we perform timing experiments and collect the table of runtimes shown below where N is the
length of the puppies list, M is the length of the jobs list, and R(N, M) is the rounded runtime for the
assignPupJobs to complete for the given values of N and M.

N M R(N, M)
100 10 0.05 sec
500 10 0.08 sec
1000 10 0.13 sec
100 50 3.1 sec
500 50 15.5 sec
1000 50 30.5 sec
100 100 24.9 sec
500 100 125.1 sec

1000 100 251.9 sec

Estimate the runtime in terms of N and M, assuming that the runtime is of the form ~aNb1Mb2 in tilde
notation, similar to the ungraded part of HW2. a is given for you.

a ≅ 251.9 / (1000b1 × 100b2), b1 ≅ 1, and b2 ≅ 3, where ≅ means “approximately equals”.

You should round your exponents, giving integer values for b1 and b2.

 UC BERKELEY
Login: _______

 10

5. Regex (5.25 points).

Suppose we have the regular expressions in the left most column of the table below. For each string (in
the right 7 columns), check the box if the regular expression for that row matches that string.

For example, if the string ulg matches the regular expression (ulg)*ometh, you’d shade the bottom
left box. Fill in the boxes completely (as you should be with all other boxes/circles on the exam). If
none of the strings match a given regular expression, leave that row blank.

 ulg ulgometh grigometh ulgo grigo meth ometh
ulg

(ulgo|grigo)meth

ulgo|grigometh

((ulgo)|(grigo))meth

(ulgo|grigo)*meth

(u|l|g)*ometh

(ulg)*ometh

CS61B MIDTERM, SPRING 2017

Login: _______

 11

6. Bipartite Graphs (12.5 points).
a) (3 pts) Suppose we want to color every vertex of a graph either blue or green such that no vertex
touches anther vertex of the same color. This is possible for some graphs but not others. A graph where
a valid coloring exists is called “bipartite”. Which of the graphs below are bipartite?

● Bipartite ○ Not Bipartite ○ Bipartite ● Not Bipartite

Explanation: This problem was to help build an intuition of how the two color algorithm works. The
algorithm works as follows. Start with a node and perform a DFS traversal. For each vertex you visit,
alternate between two colors. If you never color a vertex such that it shares a color with its neighbor,
then the graph is bipartite!

b) (9.5 pts) Suppose we are using the undirected Graph API from the lecture / optional textbook, shown
below.

public class Graph {
 public Graph(int V): Create empty graph with v vertices
 public void addEdge(int v, int w): add an edge v-w
 Iterable<Integer> adj(int v): vertices adjacent to v
 int V(): number of vertices
 int E(): number of edges
 ...
}

Fill in the method twocolor below such that a correct assignment to the blue vertices is printed out
when the code runs, or if no such assignment is possible, an exception is thrown. Write only one
statement per line (note that the for loop counts as one statement by the rules of the exam on page 1).

Explanation: The trick in this problem was to use recursion that treated one of the arguments (either that
in position a or b) to be the specially designated set being assigned to during that recursive call. This
means that when you recurse, you have to switch the positions of a and b! Solution code on next page:

 UC BERKELEY
Login: _______

 12

HashSet<Integer> blue = new HashSet<Integer>();
HashSet<Integer> green = new HashSet<Integer>();
twocolor(G, 0, blue, green);
System.out.println Blue vertices are: + blue.toString ;

public static void twocolor(Graph G, int v, Set<Integer> a, Set<Integer> b){
 a.add(v);

 for (int u : G.adj(v)) {

 if (a.contains(u)) {

 throw new IllegalArgumentException("graph is not bipartite"); }

 if (!b.contains(u)) {

 twocolor(G, u, b, a);

 }

 }

}

CS61B MIDTERM, SPRING 2017

Login: _______

 13

7. Trees and Hashing (18 points).

a. (4.5 pts) Suppose we implement a LLRBBucketHashSet where the hash table buckets are stored as
left leaning red black binary search trees. Assume we resize by doubling the number of buckets
whenever the load factor L exceeds 2, and that we never decrease the number of buckets. Assume that
hashCode computation is constant time. Do not assume that the hash code nicely spreads out items! If
there are currently N items and M buckets in the hash table, fill in the runtimes for each operation for a
single call in the table below (i.e. the first box is the best case for one put call). Give your answer in Θ
notation in terms of N and M. You may not need both N and M. Not all of these facts may be relevant.

Special note: A small number of students appeared to have interpreted this problem as meaning

that we had an LLRB of buckets. That is, rather than an array of LLRBs, they had an LLRB of

lists (or even an LLRB of LLRBs). If you are one of these students, and you feel like your answers

are correct, please do submit a regrade. However, be aware that you interpretation of the problem

is a lot harder than the one on the actual exam, so please only submit a regrade if you think you

actually got the right answer. Best cases are still Theta(1) and worst cases involve Theta(Log M +

…).

Put containsKey remove
Best case Worst case Best case Worst case Best case Worst case

Θ(1) Θ(N log N) Θ(1) Θ(log N) Θ(1) Θ(log N)

b. (4.5 pts) Fill in the runtimes below for a single operation for an LLRBBucketNoResizeHashSet,
which is the same as in part a, except that the number of buckets is never increased. Give your answer in
terms of N and M. You may not need to use both of these parameters. Not all facts may be relevant.

put containsKey remove
Best case Worst case Best case Worst case Best case Worst case

Θ(1) Θ(log N) Θ(1) Θ(log N) Θ(1) Θ(log N)

c. (2 pts) If we have an LLRBBucketHashSet that is initially empty and we perform Q insertions,

what is the amortized (i.e. average) runtime for a single call to put assuming that our hash code

spreads items nicely across the buckets? Give your answer in the blank below in terms of Q and M.
You may not need to use both of these parameters. Not all facts may be relevant.

Amortized time per put call after Q calls: O(1)

d. (2 pts) Same question as part c, but for an LLRBBucketNoResizeHashSet.

Amortized time per put call after Q calls: O(log (Q / M))

 UC BERKELEY
Login: _______

 14

e. (3 pts) Is an LLRBBucketHashSet significantly worse, about the same, or significantly better than a
standard HashSet that uses a linked list for buckets? Explain your answer.

LLRBBucketHashSets are: ● Significantly Worse ● About the same ● Significantly Better

Explanation: All of the answers were correct, what matters for this problem is your explanation and
assumptions.

Significantly Better:
In the case that the hashcode was bad, leading to worst case performance in an ordinary HashSet (many
collisions), the logN performance boost given by the LLRB tree would significantly improve over the
linear performance of a linked list.

About the same:
This case assumed that the hashcode was good. Since with a good hashcode, the number of items in a
bucket is about L (the load factor), which is constant. A linked list would yield O(L) performance while
an LLRB tree would yield O(log(L)) performance. But since L is constant, both of these would have
O(1) asymptotic performance.

Significantly Worse:
The case also assumed that the hashcode was good, so the runtime of both data structures was O(1). But
it recognized that the constant factor needed to keep an LLRB tree in order is much higher than the
simple operations being performed on a linked list, and therefore the overhead of performing LLRB
balancing would hurt performance.

f. (2 pts) Suppose we wanted to implement LLRBBucketHashSet by using the RedBlackBST.java
file provided in our optional textbook. Would it be more appropriate to use an extension based approach
(i.e. extending RedBlackBST), a delegation approach (having instance variables that include a
RedBlackBST), or either one?

It’d be better to use: ○ Extension ● Delegation ○ Either is appropriate

CS61B MIDTERM, SPRING 2017

Login: _______

 15

8. Xelha (25 points).

Consider the method defined below which generates a XelhaTree from a list of numbers.

public IntTree generateXelhaTree(List<Integer> X)

Given a list of numbers X, a XelhaTree for that list obeys the following:

1. The XelhaTree has the min-heap property (i.e. every value is less than or equal to its children).
2. An inorder traversal of the XelhaTree visits the nodes in the same order as the list.

For example, given the list [9, 3, 7, 15, 1, 8, 12], the corresponding XelhaTree is as shown below in part
a. This tree has the min-heap property, and an in-order traversal of this tree visits the vertices in the
order 9, 3, 7, 15, 1, 8, 12. A XelhaTree does not need to be complete. XelhaTrees allow duplicate items.

a. (2 pts) Which of the following are valid XelhaTrees for the given sequences? The first is done for
you.

[9, 3, 7, 15, 1, 8, 12]

Valid: ●, Invalid: ○

[4, 3, 6, 5, 8, 7, 9]

Valid: ●, Invalid: ○

[1, 2, 2, 2]

Valid: ●, Invalid: ○

b. (3 pts) Draw a valid XelhaTree corresponding to the sequence [8, 3, 9, 1].

 UC BERKELEY
Login: _______

 16

c. (5 pts) Draw a valid XelhaTree corresponding to the sequence [13, 7, 2, 1, 5, 16, 8, 9]. Don’t spend
too much time on this if you’re stuck! Go back to an earlier problem and come back later.

d. (15 pts) Describe an algorithm in English for building a XelhaTree (i.e. createXelhaTree). Your

answer will be graded on correctness, efficiency, and clarity. To keep things organized, you might
consider using a numbered list of steps as all or part of your answer. If you didn’t figure out c on the
previous page, there’s probably no point in working on this one.

For full credit, your algorithm must take less than Θ(N2

) time in the worst case, though partial credit
will be given for algorithms that complete in Θ(N2

) time in the worst case.

We will provide two common Θ(N2) solutions and the non-trivial Θ(N) solution. The solution we saw
most often was this recursive Θ(N2) algorithm:

createXelhaTree(List L):
 Let index i be the index of the smallest element in L
 Create a TreeNode with value L[i]
 Set the left child of this node to createXelhaTree(L[0:i])
 Set the right child of this node to createXelhaTree(L[i+1:end])
 Return this node.

An alternative O(N^2) solution we saw fairly frequently was the following:

createXelhaTree(List L):
 Sort L, remembering the original index of each value.
 Make a new tree T, initially empty
 For item i in L:
 Insert i into L.
 Return T

Here Insertion is always done at a leaf node and choosing to go left or right at a node when inserting is
done by comparing the original indices of the two values.
Though Θ(NlogN) solutions exist, in most cases a Θ(NlogN) solution was the Θ(N) solution made
slightly more complicated. We present only the following Θ(N) solution.

CS61B MIDTERM, SPRING 2017

Login: _______

 17

First define a helper function buildSubtree(List L, int min) which takes in an inorder list of
items L (imagine they’ve already been placed into TreeNodes) and min the smallest value allowed from
L in the subtree constructed in the current call frame.

buildSubtree(List L, int min):
 Let current and root be two TreeNode pointers initialized to null.
 While L is not empty:
 if (L[0] is smaller than min):
 return root
 else if (root is null or L[0] is smaller than the root):
 Remove L[0] and assign it to current.
 Assign left child of current to the old root
 Assign root to current
 else if (L[0] is larger than the root):
 Set right child of root to result of buildSubtree(L, root)
 return the root

The entire tree can be created in Θ(N) time by calling buildSubtree(L, -infinity). There is an
iterative variant of this method that works in the following way (plus some base cases and null checks).
It is worth noting that this requires the tree to have parent pointers, whereas the recursive solution does
not.

createXelhaTree(List L):
 Define two TreeNode pointers: root, last_inserted
 For i=0 to L.length - 1:
 if L[i] is smaller than root:
 Assign root to L[i]

Assign L[i]'s left child point to the old root
 Else:
 While L[i] is smaller than last_inserted:
 Reassign last_inserted to parent of old last_inserted
 Assign left child of L[i] to be right child of last_inserted
 Assign the right child of last_inserted to be L[i]
 Assign last_inserted to L[i]
 Return root

Note that after the first assign in the else block L[i] will be greater than last_inserted.

End of Exam Decompression Space

