
Problem 1 (30 points)
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Figure 1: View of polaroid placement, looking in +ŷ-direction, part (a).

(a) After the initial unpolarized light passes through polaroid A, the intensity will reduce by half:

IA =
I0
2
, (1)

and the light between A and C will be polarized vertically (along the ẑ-direction).
If the polarization axis of C is at angle θC to the polarization axis of A, the intensity IC will be:

IC = IA cos
2 θC =

I0
2
cos2 θC . (2)

Since the angle between the axes of A and B is π
2
, the angle between C and B is π

2
− θC , and

If
I0

=
IC cos2(π

2
− θC)

I0
=

1

2
cos2(θC) cos

2(
π

2
− θC) (3)

You can notice that cos(π
2
− θ) = sin θ and use a double angle identity to say that

If
I0

=
1

2
cos2(θC) cos

2(
π

2
− θC) =

1

2
cos2 θC sin2 θC =

1

2

(
sin(2θC)

2

)2

. (4)

Since the sin function is maximal when its argument is π
2
, the maximum for If

I0
occurs when 2θC = π

2
,

or θ∗C =
π

4
.

The value for θ∗C can also be found by setting the derivative of If/I0 (with respect to θC) equal to
zero.

d(If/I0)

dθC
= 0 = cos θC sin θC(cos

2 θC − sin2 θC) (5)

gives minima at θC = π
2

and θC = 0 (for cos θC = 0 and sin θC = 0), and a maximum at θC = π
4

(when cos2 θC − sin2 θC = 2 cos2 θC − 1 = 0).

(b) If θ∗C = π
4
, then

If
I0

=
1

2
cos2(θ∗C) cos

2(
π

2
− θ∗C) =

1

2
cos2

π

4
cos2

π

4

=
1

2

(
1√
2

)2(
1√
2

)2

=
1

2

(
1

2

)(
1

2

)
=

1

8

(6)



Problem 1 (30 points), continued
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Figure 2: View of polaroid placement, looking in +ŷ-direction, part (c).

(c) The final intensity for the four polaroid setup will be

If =
I0
2
cos2 θAD cos2 θDC cos2 θCB (7)

where θxy is the angle between the polarization axes of polaroids x and y.
Since D is placed so that its axis is at an angle θ∗c

2
to the vertical (and to the axis of A), θAD = θ∗c

2
.

Since C is at angle θ∗C to the vertical, θDC = θAC − θAD, or θDC =
θ∗C
2

.
And the angle between C and B is still θCB = π

2
− θ∗C .

If
I0

=
1

2
cos4

(
θ∗C
2

)
cos2

(π
2
− θ∗C

)
(8)

To get the above expression in terms of only sin θ∗C and cos θ∗C , we can use a half angle identity

cos θ
2
=
√

cos θ+1
2

:

If
I0

=
1

2

(
cos θ∗C + 1

2

)2

sin2 θ∗C . (9)

And we can plug in our answer to (a), θ∗C = π
4

to obtain our result:

If
I0

=
1

2

(
cos θ∗C + 1

2

)2

sin2 θ∗C

=
1

2

(
1√
2
+ 1

2

)2(
1

2

)
=

1

4

(
( 1√

2
+ 1)
√
2

2
√
2

)2

=
1

8

(
1 +
√
2

2

)2

(10)

The boxed expression above is written this way to highlight something: the final intensity after adding
polaroid D is greater than the three polaroid configuration used in parts (a) and (b). The part in

parentheses will be greater than 1, leading to
If
I0
>

1

8
, while our answer to (b) was If

I0
= 1

8
. The

point is also illustrated by seeing that cos4( θ
2
) > cos2 θ when 0 < |θ| ≤ π
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Problem 2 Solution

April 13, 2017

Part (a) indicates that diffraction effects should be ignored. The light shines
straight through the hole to the back of the box, where it creates a spot the
same size as the hole itself, so S = W .

Part (b) asks us to develop a correction to the answer from part (a) due to
diffraction. We can write the correction to the spot size as a Taylor series in
the non-dimensional parameter λ

W

S(W ) ≈W + C1

(
λ

W

)
+ C2

(
λ

W

)2

+ ...

where the coefficients Cn are to be determined. In the case where the hole
size W is much, much larger than the wavelength λ, we can recover our answer
from part (a). Assuming the correction is very small, we can ignore everything
but the linear term, and our job is simply to choose a value for C1. Recall
that the Rayleight criterion stipulates that the “fuzziness” of a point source due

to diffraction obeys the relation sin θ ≈ 1.22
(

λ
W/2

)
. This suggests we use the

approximation

S(W ) ≈W + 2.44L

(
λ

W

)
.

We can see from this approximation that if the hole size is made very small,
diffraction dominates and the spot size is made very large. We can see also that
if the hole size is made very large, diffraction can be neglected and the spot
size, which is essentially the size of the hole, is also very large. We can find
the intermediate hole size for which the spot size is smallest by minimizing the
above approximation. The minimal spot size occurs when W ≈

√
2.44λL.

Very few people received full credit on this problem. The most common
mistake by far was to use the Rayleigh criterion naively in part (b), and to
neglect the constant term W . Following this logic, most people said that W
should be made as large as possible (i.e. W = L) in order to minimize the
spot size. This, however, cannot be true— it’s the statement that a box with
a hole that takes up its entire side will minimize spot size, which intuition and
everyday experience would indicate is impossible.
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Problem 4

Part a

For this problem, we will set up coordinates as follows:

To get the velocity of the asteroid in the rocket’s frame, we use the velocity addition formula

u′x =
ux − V
1− uxV

c2

putting in ux = c/2 and V = −c/2, we find

u′x =
4c

5

Part b

There are a couple of different ways to solve this problem correctly.

Method 1

One can find the coordinates of the crash in the Earth frame and then perform a Lorentz transformation to
get the time coordinate of the crash in the rocket’s frame. From the symmetry of the problem, we see that
the the spatial coordinate of the crash in the Earth frame is xc = −D2 . So the time coordinate is simply

tc = xc

vR
= D/2

c/2 = D
c . Thus, the the rocket frame, the crash occurs at

ct′c = γ (ctc − βxc)

=
2√
3

(
D − D

4

)
=

√
3

2
D

Method 2

The second method involves using time dilation. Most students that got this problem correct used this method.
One can simply use

tc = γt′c

Using the above expession for tc, we again find that t′c =
√
3D
2c . The reason this method works is that the inverse

Lorentz transformation reads

ctc = γ (ct′c + βx′c)

In the rocket frame, the crash occurs at x′c = 0. Hence the above equation reduces to the usual time dilation.
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Method 3

This method was not really used, but I will write it out for your enjoyment. The idea is to find the time of the
crash in the rocket frame by doing kinematics in the rocket frame. From part (a), we know that the asteroid
moves with velocity 4c/5 in the rocket frame. We then model the path of the asteroid as

x′A(t′) =
4c

5
t′ + C

where x′A(t′) is the position of the asteroid in the rocket frame at rocket time t′. To find the constant C, we
transform the initial coordinates of the asteroid in the Earth frame to the rocket frame:

ct′A0
= γ (ctA0

− βxA0
) =

2√
3

(
0 +

D

2

)
= − D√

3

x′A0
= − 2√

3
D

Then we require x′A(t′A0
) = x′A0

so that C = −6D
5
√
3

. Then to find the time coordinate of the crash we set

x′a(t′c) = 0 =
4c

5
t′c −

6D

5
√

3

and we obtain the same answer as above.

Incorrect Method

Many students used the incorrect method of length contraction to get an answer. With this approach, one find

t′c =
D′

4c
5

=
D

γ

5

4c
=

5
√

3D

8c

Clearly this does not yield the correct answer. That this approach fails is evident from the equation for x′a(tc)

in Method 3 above. At t′ = 0, the asteroid is located at x′ = −6D
5
√
3

, not the length contracted distance D
γ =

√
3D
2 .

The physical reason why you cannont simply use length contraction is that there is no fixed length to contract
since the asteroid is moving relative to the rocket.
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