*Any additional details wrong : -1

MSE111, Midterm Exam, Spring 2017, Prof. J. Wu Closed book, equations are provided

Your name: \qquad Your Score: \qquad

1. Structure and mechanics of crystalline solids (20 points)
a. The following is the unit cell of GaAs (zincblende structure). On average how many Ga atoms are there and how many As atoms are there per unit cell? What is the coordination number for Ga and As, each? The following also shows the atomic arrangement of a (100) plane on the surface of the shown unit cell. Please draw a similar image of atomic arrangements on a (111) plane of this unit cell, and label which atoms are Ga and which are As , and label the side lengths of this (111) plane, using a.

CH So r $\xi_{a}: \notin+1$

$$
\text { Total } 10 \text { pints }
$$

Closed book, equations are provided
b. The following is the force F between two atoms in a solid. Please draw schematically, in the same figure, the corresponding potential energy E between them as a function of their distance r. Please describe briefly how you ended up with the E vs. r plot based on the force plot given. Label equilibrium distance r_{0} and bond energy E_{0} on your plot (pay attention that your E and F should align well along the r axis). Based on these plots, explain in a few lines the fact that solids typically have thermal expansion (ie., increasing temperature causes overall lattice expansion).

Describe that $F=-\frac{d E}{d r}$, which τ on the frost pase of the exam +1
(you could also explain in words)
Evs.r curve asymmetric, averse distance btw the two end pints for some enersy increases of wise in $E+3$ (as lone as your explantfono is correct)

2. Electrical transport (20 points)

a. Explain in a few lines the principle of Hall effect. A schematic is shown below. Add more schematics to help your explanation if necessary. What physical quantities can be measured

moving electrons (or charge carriers) experience lorentz force die to magnetic field applied. $(+3)$

Electric field generated by the separated change creates force that balances the loventz force due to B, $(+3)$ At stededy-state, Hall field (on Hall voltage) is measured across the sample. b. Below are two possible conduction mechanisms for a thin insulator. Explain in a few sentences each of these two mechanisms; explain how to design experiments to differentiate these two mechanisms.

One should at least mention sign of carriers (+1), and any other quantities

a. Thermionic (Schottky) emission (thick barrier)
b. Quantum tunneling (thin barrier)

Schottey emisiton = 1) electrons thermally actives to overcome schottly bumper (ϕ_{B}) to be injected to a dielectric (CB)
or 2) electrons thermally activated to overcome metal's workfunction $\left(\phi_{M}\right)$ to be ejected to vacuum.
Quantum tunneling $(+4)$ electron wavefunc extended across the thin insulator (or the barrier), election tunnels across the barrier.
Reasonable experiment t differentiate the two $(+2)$
3. Thermal transport (10 points) total tho
The thermal conductivity of a crystalline material has two components, contribution from lattice, $k_{\text {lattice, }}$ and contribution from electrons $k_{\text {electronic }}$. Here $k_{\text {lattice }}$ is low at low temperatures, and low at high temperatures, while peaks at some intermediate temperature (tens of K). Explain in details what physics causes the low $\mathrm{k}_{\text {lattice }}$ at very low temperatures, and what process causes the low $\mathrm{k}_{\text {lattice }}$ at very high temperatures. (Hint, remember the phonon scattering process, and $k_{\text {lattice }}=C_{v} \cdot v \cdot l / 3$, where $C_{v}=$ specific heat, $v=$ sound velocity, and $l=$ phonon mean free path).

1) at very low $T \Rightarrow \quad C_{v} \propto T^{3} \Rightarrow$ low T, low k (aterce $(t 3)$ phonon denisty low, phonon-phonon scattering l not limiting insignificant (+2)
2) if high $T \Rightarrow C_{v}$ is constant $(3 R)(+2)$
 increase. $\frac{l \text { (phonon mean free path) } \propto \frac{1}{T}}{\text { tHerefore }}(t 3)$ therefore, low kiattice.
total 10 points
4. Quantum physics ($\mathbf{3 0}$ points)
a. Using Heisenberg's uncertainty principle, estimate (ie., find an approximate expression without solving the Schordinger equation) the ground state energy of an electron confined in an infinitely deep, ID square well with well width L. Show details.
Heisenberg uncertainty $\Delta p-\Delta x \approx h(+1)$ total 6 points

$$
\Delta x=L \quad \Delta p=1 / L(+2)
$$

(1) elector in un infurutely deep well proparoles t_{1}
(2)
assure at lest of the $t x$ and $-x$ dwextions
\rightarrow momentum also poirtive \& nesctive
$f=W / 2 L(+1) E=\frac{p^{2}}{2 m}=\frac{h^{2}}{8 m L^{2}}(+2)$ aden of op

$$
\begin{array}{r}
p \approx \not \subset((+1) \\
E=\frac{p^{2}}{2 m}=\frac{h^{2}}{2 m L^{2}}(+2) .
\end{array}
$$

b. On the left hand side the wavefunction of a tunneling electron is schematically shown. If the barrier becomes a well with a depth V_{0} (note that here V_{0} itself is a positive number), then the situation is different. Please draw similarly the electron wavefunction in the three regions for this case. Please pay attention to wavefunctions connections, their relative amplitude, and their relative period (or wavelength). Clearly indicate how the amplitude and the wavelength differ in all three regions, or whether it should not be different. (Here, consider the case where tunneling probability (T) or the probability of transmission is less than one. Resonant tunneling ($\mathrm{T}=1$) will be discussed in the next question)

total Repoints

If the drawing is right, +2 , and if one addressed any other followin $\$$ condition, $+2 /$ each $\left\{\begin{array}{l}\text { P } \lambda_{\text {I }}<\lambda_{\text {I }} \\ \text { (2) } \lambda_{\text {III }}=\lambda_{\text {I }}\end{array}\right.$
(3) Amplitude in II $<$ auplitande in $^{\text {I }}$ (Since $T<1$)
(4) amplitude II <amplitude I, III (same here)
(a) if 4 on $\frac{14}{d x}$ continuous)

2 way of solving it, but the grading would only follow one which gives you more points (than the other)

$$
t_{0} 1+12
$$

c. The tunneling probability T for the left-hand-side case is given in the equation sheet. Please derive the new expression of T for the right-hand-side case, and prove that when $n \lambda=2 a$ (λ is electron wavelength in the well region, $\mathrm{n}=1,2,3, \ldots$), T becomes 100% (resonant tunneling). What are the values of E for these resonant tunneling events? (Please make sure your T expression contains only real parameters, no imaginary parameters, and clearly define your parameters in the expression!)
Stent from T (for left-hand side) $=\frac{1}{1+D(\sinh \alpha a)^{2}}(+1)$

$$
D=\frac{V_{0}^{2}}{4 E\left(V_{0}-E\right)} \quad(+1)
$$

T and D for region I, where

$$
\begin{aligned}
& \frac{d^{2} \psi}{d x^{2}}+\frac{2 m}{\hbar^{2}}\left(E-V_{0}\right) \psi=0 \quad \psi \bar{I}=\beta_{1} \exp (\alpha x)+\beta_{2} \exp (-\alpha x) \\
& \alpha=i k, \quad k=\frac{2 m\left(z-V_{0}\right)}{\hbar}
\end{aligned}
$$

Now for rHscase, $E+V_{0}\left(E-V, V=-V_{0}\right)$
Then $D=\frac{\frac{V_{0}^{2}}{4 z\left(-V_{0}-z\right)}, T=\frac{1}{1+D\{\sinh (i k a)\}^{2}}, k=\frac{\sqrt{2 m\left(z+V_{0}\right)}}{\hbar}}{1} \cdot(+2)$

$$
\begin{aligned}
& T=\frac{1}{1+\frac{V_{0}^{2}}{4 z\left(-V_{0}-z\right)}\{\sinh (i k a)\}^{2}}=\frac{1+\frac{V_{0}^{2}}{4 z\left(E+V_{0}\right)}\left\{\frac{\sinh (i k a)}{i}\right\}^{2}}{1+} \\
& \frac{\sinh (i k a)}{i}=\frac{\exp (i k a)-\exp (-i k a)}{2 T}=\sin k a \\
& (\omega / 0 \text { derivation }) \\
& T=\frac{1}{1+\frac{v_{0}^{2}}{4 Z\left(E+v_{0}\right)}(\sin k a)^{2}}=\frac{4 E\left(E+v_{0}\right)}{\frac{4 E\left(E+v_{0}\right)+V_{0}^{2}(\sin k a)^{2}}{n \pi}}(+3) \\
& \left.\sin k a=0, \quad T=1 \quad(+2) \quad k a=n \pi, \quad k=\frac{n \pi}{a}, \frac{2 \pi}{\lambda}=\frac{n \pi}{a}, \quad 2 a=n \lambda\right)(+1) \\
& k^{2}=\frac{n^{2} \pi^{2}}{a^{2}}=\frac{2 m\left(z+V_{0}\right)}{\hbar^{2}}, \quad E=\frac{\hbar^{2} \pi^{2} n^{2}}{2 m a^{2}}-V_{0}(+2)
\end{aligned}
$$

Distervent way

Total 12 points MSE111, Midterm Exam, Spring 2017, Prof. J. Wu Closed book, equations are provided
c. The tunneling probability T for the left-hand-side case is given in the equation sheet. Please derive the new expression of T for the right-hand-side case, and prove that when $\mathrm{n} \lambda=2 \mathrm{a}$ (λ is electron wavelength in the well region, $\mathrm{n}=1,2,3, \ldots$), T becomes 100% (resonant tunneling). What are the values of E for these resonant tunneling events? (Please make sure your T expression contains only real parameters, no imaginary parameters, and clearly define your parameters in the expression!)

$$
\begin{aligned}
& \left.\begin{array}{ll}
\text { region I, III } & \frac{d^{2} y}{d u^{2}}+\frac{2 m}{\hbar^{2}} E \psi=0 \\
\text { region I } & \frac{d^{2} \psi}{d^{2}}+\frac{2 m}{t^{2}}\left(E+v_{0}\right) \psi=0
\end{array}\right\}(40-5) \\
& (+0.5) \\
& \text { (}\left\{\begin{array}{ll}
\psi_{I}=A e^{i k_{1} x}+B e^{-i k_{1} x} & \left(x<-\frac{a}{2}\right)
\end{array} \quad k_{1}=\frac{\sqrt{2 m z}}{\hbar} \psi_{I}=C e^{i k_{2} x}+D e^{-i k_{2} x} \quad\left(-\frac{a}{2} \leqq x \leqq \frac{a}{2}\right) \quad k_{2}=\frac{\sqrt{2 m\left(z+v_{0}\right)}}{\hbar}\right)
\end{aligned}
$$

no reflected bean $(-x$ direction $)$ in region $\pi, 400$

ब

$$
\begin{aligned}
& \psi_{I}\left(-\frac{a}{2}\right)=\psi_{\bar{I}}\left(-\frac{a}{2}\right) \\
& \left.A e^{-i k_{\sqrt{2}}}+B e^{i k_{1} \frac{a}{2}}=C e^{-i k_{2} \frac{a}{2}}+1 e^{i k_{2} \frac{a}{2}}\right)\left(t_{0}-5\right)
\end{aligned}
$$

(3)

$$
\begin{align*}
& \frac{d \psi_{2}}{d x}\left(-\frac{a}{2}\right)=\frac{d \psi_{\bar{z}}\left(-\frac{s}{2}\right)}{d x} \\
& \left.A_{i} k_{1} e^{-i k_{1} \frac{a}{2}}-k_{i} i k_{1} e^{i k_{1} \frac{a}{2}}=c i k_{2} e^{-i k_{2} \frac{a}{2}}-A_{i} k_{2} e^{i k_{2} \frac{a}{2}}\right) \tag{+0-5}
\end{align*}
$$

(3) $\psi_{\text {I }}\left(\frac{a}{2}\right)=\psi_{\text {IT }}\left(\frac{a}{2}\right)$

$$
\begin{aligned}
& \psi_{I}\left(\frac{a}{2}\right)=\psi_{\text {II }}\left(\frac{a}{2}\right) \\
& \left.C e^{7 k_{2} \frac{a}{2}}+D e^{-i k_{2} \frac{a}{2}}=F e^{7 k_{1} \frac{a}{2}}\right)(+0.5)
\end{aligned}
$$

(4)

$$
\begin{aligned}
& \frac{d \psi_{a}}{d x}=\frac{d i \pi}{d x}\left(4+\frac{a}{2}\right) \\
& \left.c r k_{2} e^{\tau k_{22}}-\text { oik 2 } e^{-i k_{2} \frac{a}{2}}=F i k_{1} e^{i k_{1} \frac{a}{2}}\right)(t,-5)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1) } x i k_{1}+e q \text { (2) } \\
& \left.2 A_{i} k_{1} e^{-i k_{1} q_{2}}=c_{i}\left(k_{1}+k_{2}\right) e^{-i k_{2} y_{2}}-D_{i} c_{k_{2}}-k_{1}\right) e^{\tau k_{2} g_{2}}
\end{aligned}
$$

eq (3) $x i k_{2}+9$ (4)

$$
\begin{aligned}
& 2 C_{i} k_{2} e^{\tau\left(k_{2} \frac{\sigma}{2}\right.}=F_{i}\left(k_{2}+k_{1}\right) e^{i k_{1} / 2} \quad C=F \frac{\left(k_{2}+k_{1}\right)}{2 k_{2}} e^{i k_{1} \frac{a}{2}} e^{-i k_{2} \frac{a}{2}} \\
& \text { eq (3) } x i k_{2}-e q(4) \\
& \text { 2Dik2 } e^{-i k_{2} \theta_{2}}=F_{i}\left(k_{2}-k_{1}\right) e^{i k_{1} 4 / 2} \quad D=F \frac{\left(k_{2}-k_{1}\right)}{2 k_{2}} e^{i k_{1} \theta_{2} / 2} e^{i k_{2} Q_{2}} \\
& 2 A \times k_{1} e^{-i k_{1}^{a / 2}}=F \neq \frac{\left(k_{2}+k_{1}\right)^{2}}{2 k_{2}} e^{i k_{1}^{a / 2}} e^{-\tau k_{2} a}-F X \frac{\left(k_{2}-k_{1}\right)^{2}}{2 k_{2}} e^{i k_{1}^{a} a / 2} e^{\tau k_{2} C_{1}} \\
& \left(4 k_{1} k_{2} e^{-i k_{1} a}\right) A=\left\{\left(k_{2}+k_{1}\right)^{2} e^{-i k_{2} a}-\left(k_{2}-k_{1}\right)^{2} e^{\left.i k_{2} a\right\}}\right\} \\
& F / A=\frac{4 k_{1} k_{2} e^{-i k_{1} a}}{\left(k_{2}+k_{1}\right)^{2} e^{-i k_{2} a}-\left(k_{2}-k_{1}\right)^{2} e^{i k_{2} a}}\left(t_{0}-5\right) \\
& T=\left|\frac{F}{A}\right|^{2}=\frac{16 k_{1}^{2} k_{2}^{2}}{\left(\left(k_{2}+\left(k_{1}\right)^{2} e^{-i k_{2} a}-\left.\left(k_{2}-k_{1}\right)^{2} e^{i k_{2} a}\right|^{2}\right.\right.} \quad\left(t_{0}-5\right) \\
& \begin{array}{ccc}
\text { move math } . . . t\left(z+v_{0}\right)+2 & \sin k_{2} a=0, t=1 \\
t=\frac{k_{2}}{4 z\left(z+v_{0}\right)+v_{0}^{2} \sin ^{2}\left(k_{2} a_{1}\right)} & k_{2} a_{2} u \pi & k_{2}=\frac{2 \pi}{\lambda} \\
2 a=n) &
\end{array} \\
& k_{2}^{2}=\frac{2 m\left(z+v_{0}\right)}{\hbar^{2}}=\frac{n^{2} \pi^{2}}{a^{2}}, \quad z=\frac{\hbar^{2} n^{2} \pi^{2}}{2 m a^{2}}-V_{0} \\
& +1 \\
& t^{2}
\end{aligned}
$$

