Solutions to Midterm 2

Problem 1. Set up an absolute (x, y) frame with the x-axis directed horizontally to the left. For the system of rod and two balls,

$$
\begin{array}{ll}
& \sum F_{x}=m \bar{a}_{x} \\
\Rightarrow & 12=\left(\frac{4+2}{32.2}\right) \bar{a} \\
\Rightarrow & \bar{a}=64.4 \mathrm{ft} / \mathrm{sec}^{2}
\end{array}
$$

The distance between mass center G and the $2-\mathrm{lb}$ ball is given by

$$
\begin{aligned}
& 4(10-b)=2 b \\
\Rightarrow \quad & b=\frac{20}{3} \text { in }=\frac{5}{9} \mathrm{ft}
\end{aligned}
$$

The angular position may be measured by the angle θ between the rod and the vertical.

$$
H_{G}=\left(H_{G}\right)_{\mathrm{rel}}=\sum m_{i} r_{i}^{2} \dot{\theta}=\frac{4}{32.2}\left(\frac{10-b}{12}\right)^{2} \dot{\theta}+\frac{2}{32.2}\left(\frac{b}{12}\right)^{2} \dot{\theta}=0.0288 \dot{\theta}
$$

For the system,

$$
\begin{array}{ll}
& \sum M_{G}=\dot{H}_{G} \\
\Rightarrow & F\left[\frac{6+(10-b)}{12}\right]=0.0288 \ddot{\theta} \\
\Rightarrow & \ddot{\theta}=325 \mathrm{rad} / \mathrm{sec}^{2}
\end{array}
$$

Problem 2. Attach an absolute (x, y) frame to O with the x-axis directed to the right. Point A moves in a circle about O and point B in a circle about C. For A, B on plate $A B D$,

$$
\begin{array}{ll}
& \mathbf{v}_{A}=\mathbf{v}_{B}+\mathbf{\omega}_{A B} \times \mathbf{r}_{A / B} \\
\Rightarrow & v_{A} \mathbf{j}=v_{B} \mathbf{i}+\omega_{A B} \mathbf{k} \times\left(\mathbf{r}_{A}-\mathbf{r}_{B}\right)=v_{B} \mathbf{i}+(-3 \mathbf{k}) \times[3 \mathbf{i}-(7 \mathbf{i}+3 \mathbf{j})] \\
\Rightarrow & v_{A} \mathbf{j}=v_{B} \mathbf{i}+(-3 \mathbf{k}) \times(-4 \mathbf{i}-3 \mathbf{j})
\end{array}
$$

Equate i coefficients,

$$
v_{B}=9 \mathrm{in} / \mathrm{sec}
$$

The velocity v_{B} is directed to the right. Since B moves in a circle about fixed point C,

$$
\omega_{B C}=\frac{v_{B}}{B C}=\frac{9}{3}=3 \mathrm{rad} / \mathrm{sec}
$$

CW
3. $v_{n}=-10 i+12 \underline{j}, \quad e_{1}=\cos \theta i+\sin \theta j$
a)

$$
e_{2}=-\sin \theta i+\cos \theta j
$$

$$
\begin{aligned}
& \underline{v}_{A}=\underline{v}_{\text {rel }}+w \times r \quad\left\{e_{1}, e_{2}, k\right\} \rightarrow \text { rotating axes } \\
& -10 i+12 \underline{j}=u e_{2}+w k \times\left(L e_{1}+d e_{2}\right) \\
& -10 i+12 j=u e_{2}+2 w e_{2}-w e_{1}
\end{aligned}
$$

$$
\begin{equation*}
-10 i \cdot e_{1}+12 \underline{j} \cdot e_{1}=-w \tag{1}
\end{equation*}
$$

$-10 i \cdot e_{2}+12 j \cdot e_{2}=u+2 w \quad$ (2)
$(1) \rightarrow-10 \cos 30^{\circ}+12 \sin 30^{\circ}-\omega \Rightarrow \omega=2.6603 \mathrm{rad} / \mathrm{s}$
$(2) \rightarrow+10 \sin 30^{\circ}+12 \cos 30^{\circ}=u+2(2.6603) \Rightarrow u=10.0717 \mathrm{~m} / \mathrm{s}$
b)

$$
\begin{aligned}
\underline{a}_{c o r} & =2 \underline{u} \times \underline{\text { vel }} \\
& =(2) 2.6603 \mathrm{k} \times 10.0717 \underline{e}_{2} \\
& =-53.5875 \underline{e}_{1} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

It appears due to angular velocity of basis.

$$
\dot{\underline{e}}_{1} \neq 0 \quad \dot{\underline{e}}_{2} \neq 0
$$

$$
\dot{\underline{e}}_{1}=w_{1} \times \underline{e}_{1}
$$

$$
\begin{aligned}
& \underline{r}=r_{1} \underline{e}_{1}+r_{2} \underline{e}_{2} \\
& \underline{v}=\dot{r}_{1} e_{1}+\dot{r}_{2} e_{2}+\dot{\theta} \underline{k} \times\left(\underline{r}_{1} e_{1}+r_{2} e_{2}\right) \\
& =\underline{v} e l+\underline{w} \times r \\
& \underline{a}= \\
& \underline{y} r e l \\
& = \\
& \text { arel }+\underline{\alpha} \times \underline{w}+\underline{w} \times \underline{v} \\
& =\text { aral }+\underline{\alpha} \times \underline{r}+\underline{w} \times(\underline{v}+\underline{v} \times \underline{r} e l+\underline{\alpha} \times \underline{r}+\underline{w} \times(\underline{\omega} \times r)
\end{aligned}
$$

