MIDTERM II: MATH H53

2017. 3. 23.

8:10 AM-9:20 AM

Student Name: (First) \qquad (Last)

Signature:

\qquad

Berkeley e-mail address: \qquad @ berkeley.edu

1. Determine whether the following function is continuous at $(0,0)$ or not.
(1) (10 points)

$$
f(x, y)= \begin{cases}\frac{x^{2} y}{x^{2}+2 y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Answer:

(2) (10 points)

$$
f(x, y)= \begin{cases}x y \sin \frac{1}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Answer:

2. Consider the curve $\mathbf{r}(t)=\left\langle t+1, \frac{1}{2} t^{2}, 3\right\rangle, t \in \mathbb{R}$.
(1) (6 points) Find the curvature of the curve at $\mathbf{r}(0)$.

Answer:

(2) (14 points) Find the principal unit normal vector and unit binormal vector to the curve at $\mathbf{r}(0)$.

Answer:

(3) (8 points) Find the osculating plane at $\mathbf{r}(0)$.

Answer:

(4) (12 points) Find the osculating circle at $\mathbf{r}(0)$.

Answer:

3. (15 points) Let $g(x, y)$ and $h(x, y)$ are smooth functions and satisfy

$$
\begin{aligned}
& g(0,0)=h(0,0)=1 \\
& \nabla g(0,0)=\langle 1,2\rangle, \nabla h(0,0)=\langle-1,4\rangle
\end{aligned}
$$

Let $f(x, y)$ be a smooth function satisfying $\nabla f(1,1)=\langle 1,2\rangle$. Find gradient of the function $p(x, y)=f(g(x, y), h(x, y))$ at $(x, y)=(0,0)$.

Answer:

4. (20 points) Let S be a surface described by the equation $x^{2}+y^{2}+z^{2}+k x y z=2$ for some constant k. Furthermore, assume that the tangent plane to the surface S at $(1,1,0)$ is given by $x+y+2 z=2$. Find the value of k and find the tangent line to the curve $2 x^{2}+k \sin (x y)=2$ at $(1,0)$.

Answer:

5. (20 points) Find the maximum and minimum of the function $f(x, y)=x^{2}+2 y^{2}-2 x y-4 y$ on

$$
\{(x, y):-2 \leq x \leq 2, \quad-2 \leq y \leq 2\}
$$

Answer:
6. (20 points) Consider a function $f(x, y, z)=x^{3}+y^{3}+z^{3}$. Find the maximum and minimum of $f(x, y, z)$ subject to the condition $x^{2}+y^{2}+z^{2}=3$.

Answer:

7. (15 points) Let D be a region in \mathbb{R}^{2} defined by

$$
D=\left\{(x, y): x^{2}+2 y^{2} \leq 4 x \geq 0\right\}
$$

and let f be a function on D defined by $f(x, y)=x y^{2}$. Evaluate $\iint_{D} f(x, y) d A$.

Answer:
8. (Bonus Problem, +20 points) Find the maximum and minimum of $f(x, y, z)=x^{3}+y^{3}+z^{3}$ subject to two conditions $x^{2}+y^{2}+z^{2}=3$ and $x+y+z=0$.

Answer:

