MIDTERM I: MATH H53

2017. 2. 14.

8:10 AM-9:10 AM

Student Name: (First) \qquad (Last)

Signature:

\qquad

Berkeley e-mail address: \qquad @ berkeley.edu

1. Consider the curve C corresponding to the following parametric equation:

$$
x=\cos t+\sin t+1, \quad y=\cos t-\sin t+2 ; 0 \leq t \leq 2 \pi
$$

(1) [10 points] Find the equation of the tangent line to the curve C at $(2,1)$.

Answer:

(2) $[10$ points $]$ Find the length of the curve C.

Answer:

2. [10 points] Express the following curve by the polar equation $r=f(\theta)$:

$$
x^{4}+y^{4}=x^{3}+y^{3} .
$$

Answer:

3. [15 points] Find two foci of the following conic curve:

$$
x^{2}-y^{2}+2 x+2 y-1=0 .
$$

Answer:

4. Consider the curve C described by the following polar equation:

$$
r=e^{2 \theta} ; 0 \leq \theta \leq 2 \pi .
$$

(1) [10 points] Find the equation of the tangent line to the curve C at $(r, \theta)=\left(e^{2 \pi}, \pi\right)$.

Answer:

(2) $[10$ points $]$ Find the length of the curve C.

Answer:

(3) [10 points] Find the area of the region enclosed by the curve C and the line segment connecting $(r, \theta)=(1,0)$ and $(r, \theta)=\left(e^{4 \pi}, 2 \pi\right)$.

Answer:

5. Consider two curves C_{1} and C_{2} determined by the following parametric equations:

$$
\begin{array}{ll}
C_{1}: & x=t^{3} ; y=t+1 ; t \in \mathbb{R}, \\
C_{2}: & x=t^{3} ; y=t^{2}+t ; t \in \mathbb{R} .
\end{array}
$$

(1) [7 points] Find two intersection points between C_{1} and C_{2}.

Answer:

(2) $[18$ points $]$ Find the area of the region enclosed by both C_{1} and C_{2}.

Answer:

6. Consider two lines ℓ_{1} and ℓ_{2} given by the following vector equations:

$$
\begin{aligned}
\ell_{1}: & \langle-1,2,1\rangle+t\langle 2,-1,0\rangle ; t \in \mathbb{R} \\
\ell_{2}: & \langle 3,3,2\rangle+t\langle 2,2,1\rangle ; t \in \mathbb{R}
\end{aligned}
$$

(1) [6 points] Find the intersection point of two lines ℓ_{1} and ℓ_{2}.

Answer:

(2) [14 points] Let $0 \leq \theta<\pi$ be the angle between two lines ℓ_{1} and ℓ_{2}. Find $\cos \theta$.

Answer:

(3) [20 points] Find the equation of the plane P which contains both ℓ_{1} and ℓ_{2}.

Answer:

(4) [10 points] Find the distance between the point $(3,3,4)$ and the plane P.

Answer:

7. [Bonus problem, +20 points] Suppose that two vectors \vec{a} and \vec{b} satisfy

$$
|\vec{a}|=1, \quad|\vec{a}+\vec{b}|=2 \text { and }|\vec{a}+2 \vec{b}|=4 .
$$

Find $|\vec{b}|$.

Answer:

