MIDTERM I: MATH H53

2017. 2. 14. 8:10 AM-9:10 AM

Student Name: (First)	(Last)
Signature:	
Berkeley e-mail address :	@ berkeley.edu

1	Consider	the curve	Corr	rocponding	to the	following	parametric	oquation:
1.	Consider	the curve	e Con	responding	to the	IOHOWING	parametric	equation:

$$x = \cos t + \sin t + 1$$
, $y = \cos t - \sin t + 2$; $0 \le t \le 2\pi$.

(1) [10 points] Find the equation of the tangent line to the curve C at (2, 1).

Answer:

(2) [10 points] Find the length of the curve C.

2. [10 points] Express the following curve by the polar equation $r = f(\theta)$:

$$x^4 + y^4 = x^3 + y^3 \ .$$

Answer:

3. [15 points] Find two foci of the following conic curve:

$$x^2 - y^2 + 2x + 2y - 1 = 0.$$

	α . 1	. 1	\sim 1	.1 1 1	. 1	11 .		
4.	Consider	the curve	$\in C'$ desc	cribed by	the to	ollowing	polar	equation:

$$r = e^{2\theta} \; ; \; 0 \le \theta \le 2\pi \; .$$

(1) [10 points] Find the equation of the tangent line to the curve C at $(r, \theta) = (e^{2\pi}, \pi)$.

Answer:

(2) [10 points] Find the length of the curve C.

Answer:

(3) [10 points] Find the area of the region enclosed by the curve C and the line segment connecting $(r, \theta) = (1, 0)$ and $(r, \theta) = (e^{4\pi}, 2\pi)$.

_	a .1	\sim	1 0	1	1	C 11 ·		
5.	Consider two	o curves C_1	and C_2	determined	by the	following	parametric e	quations:

$$C_1: \quad x=t^3 \; ; \; y=t+1 \; ; \; t \in \mathbb{R} \; ,$$

$$C_2: \quad x = t^3 \; ; \; y = t^2 + t \; ; \; t \in \mathbb{R} \; .$$

(1) [7 points] Find two intersection points between C_1 and C_2 .

Answer:

(2) [18 points] Find the area of the region enclosed by both C_1 and C_2 .

6. Consider two lines ℓ_1 and ℓ_2 given by the following vector equations:

$$\ell_1: \quad \langle -1, 2, 1 \rangle + t \langle 2, -1, 0 \rangle \; \; ; \; t \in \mathbb{R}$$

$$\ell_2: \quad \langle 3, 3, 2 \rangle + t \langle 2, 2, 1 \rangle \; ; \; t \in \mathbb{R} \; .$$

(1) [6 points] Find the intersection point of two lines ℓ_1 and ℓ_2 .

Answer:

(2) [14 points] Let $0 \le \theta < \pi$ be the angle between two lines ℓ_1 and ℓ_2 . Find $\cos \theta$.

(3) [20 points]	Find the equation of the	he plane P which	contains both ℓ_1 and	ℓ_2 .
Answer:				
(4) [10 points]	Find the distance between	een the point (3,	(3, 4) and the plane P	•
Answer:				

7. [Bonus problem, +20 points] Suppose that two vectors \vec{a} and \vec{b} satisfy

$$|\vec{a}| = 1$$
, $|\vec{a} + \vec{b}| = 2$ and $|\vec{a} + 2\vec{b}| = 4$.

Find $|\vec{b}|$.