Solutions to Midterm 1

Problem 1. (a) Car B is in rectilinear motion. Attach a translating (x, y) frame to B with the x-axis at 30° to \mathbf{v}_{B}.

$$
\begin{array}{ll}
v_{A}=30 \frac{5280}{60^{2}}=30 \frac{44}{30}=44 \mathrm{ft} / \mathrm{sec} & \text { along } \mathbf{j} \\
a_{A}=\frac{v_{A}^{2}}{\rho}=\frac{44^{2}}{500}=3.872 \mathrm{ft} / \mathrm{sec}^{2} & \text { along } \mathbf{i} \\
a_{B}=5 \frac{44}{30}=7.333 \mathrm{ft} / \mathrm{sec}^{2} & \text { along }-\mathbf{v}_{B}
\end{array}
$$

Observe that

$$
\begin{array}{ll}
& \mathbf{a}_{A}=\mathbf{a}_{B}+\mathbf{a}_{A / B} \\
\Rightarrow & 3.872 \mathbf{i}=-7.333 \cos 30^{\circ} \mathbf{i}-7.333 \sin 30^{\circ} \mathbf{j}+\mathbf{a}_{A / B} \\
\Rightarrow & \mathbf{a}_{A / B}=10.223 \mathbf{i}+3.667 \mathbf{j} \\
\Rightarrow & a_{A / B}=10.86 \mathrm{ft} / \mathrm{sec}^{2}
\end{array}
$$

The solution may also be obtained graphically from a vector diagram of accelerations.
(b) An (x, y) frame attached to car A (with the y-axis in direction of \mathbf{v}_{A}) is a rotating system. The acceleration $\mathbf{a}_{\text {rel }}$ of car B as observed from car A is such that $\mathbf{a}_{\mathrm{rel}} \neq-\mathbf{a}_{A / B}$.

Problem 2. Blocks A and B are in rectilinear motion. All positions are measured from a vertical line through the centers of pulleys.

$$
\begin{aligned}
& 2 s_{A}+s_{B}=C \\
\Rightarrow \quad & 2 v_{A}+v_{B}=0
\end{aligned}
$$

If A moves by $0.4 \mathrm{~m}, B$ would move by a distance of $\Delta s_{B}=0.8 \mathrm{~m}$. The only force that performs work is the external force P. The work of tension is zero because tension in a string occurs as equal and opposite internal forces with the same displacement. When the system moves from an initial rest configuration to a final configuration after A has moved 0.4 m ,

$$
\begin{array}{ll}
& U_{1-2}=\Delta T=T_{2} \\
\Rightarrow & P \Delta s_{B}=\frac{1}{2} m_{A} v_{A}^{2}+\frac{1}{2} m_{B} v_{B}^{2}=\frac{1}{2} m_{A} v_{A}^{2}+\frac{1}{2} m_{B}\left(-2 v_{A}\right)^{2} \\
\Rightarrow & v_{A}=\sqrt{\frac{40(0.8)}{3+5(4)}}=-1.18 \mathrm{~m} / \mathrm{s}
\end{array}
$$

In addition,

$$
v_{B}=-2 v_{A}=2.36 \mathrm{~m} / \mathrm{s}
$$

3)
a)

$$
m_{p} \underline{v}_{p}+m_{b} \underline{v}_{b}=m_{p} v_{p}^{\prime}+m_{b} \underline{v}_{b}^{\prime} \quad\left(v_{p}^{\prime}=v_{b}^{\prime}=v^{\prime}\right)
$$

$$
\Rightarrow v^{\prime}=\frac{m}{m+M} v=\frac{0.05}{(0.05+25)}(800)=1.5968 \mathrm{~m} / \mathrm{s}
$$

b)

Before

$$
N^{-}=245.25 \mathrm{~N}
$$

$\Rightarrow[\| N]=N^{+} N^{-}=32.4264 N$ Jump in tension
c)

$$
\begin{aligned}
& T_{1}+V_{1}+y F_{12}^{0}=T_{2}+V_{2} \quad \text { Datum } \rightarrow \text { Equilibrium } \\
& \frac{1}{2}(m+m) v^{\prime 2}=(m+m) g l(1-\cos \theta) \\
& \frac{1}{2}(25.05) 1.5968^{2}=(25.05)(9.81)(2)(1-\cos \theta) \\
& \cos \theta=0.935 \Rightarrow \theta=20.7684^{\circ}
\end{aligned}
$$

