Chem 1A, Fall 2015, Midterm Exam 1. Version A **September 21, 2015** (Prof. Head-Gordon)²

Name:

 Student ID:______
 TA: ______

Contents: 9 pages

- A. Multiple choice (7 points)
- B. Stoichiometry (10 points)
- C. Photoelectric effect (8 points)
- D. Particle-in-a-box (6 points)
- E. Atomic orbitals (6 points)
- F. Ionic bonding (6 points)
- G. Covalent bonding (10 points)

Total Points: 53 points

Instructions: Closed book exam. Basic scientific calculators are OK. Set brains in high gear and go!

Some possibly useful facts and figures:

 $R = 8.3145 \text{ J mol}^{-1} \text{ K}^{-1}$ molar volume at STP = 22.4 L $h = 6.6261 \times 10^{-34} \text{ J s}$ $\hbar = h/2\pi$ $c = 2.9979 \times 10^8 \text{ m s}^{-1}$ $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$ $m_e = 9.1094 \times 10^{-31} \text{ kg}$ $N_0 = 6.0221 \times 10^{23} \text{ mol}^{-1}$

Some possibly relevant equations:

Planck relation:	E = hv	
de Broglie relation:	$p = h / \lambda$	
wave equation:	$c = v\lambda$	
uncertainty principle	$\Delta p \Delta x \ge \hbar / 2$	
particle-in-a-box	$E_n = \frac{n^2 \pi^2 \hbar^2}{2ma^2}$	$\Psi_n = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}$
hydrogen atom	$E_n = -\frac{Z^2}{n^2} R_{\infty}$	$\mathbf{R}_{\infty} = 2.18 \times 10^{-18} J$
linear momentum	p = mv	
kinetic energy	$T = \frac{1}{2}mv^2$	
photoelectric effect	E_{kin} (e-) = hv - Φ	$=$ hv - hv $_0$

ф		0	Š	Neon	18	Ar	Argon 10 04 0	36	Κŗ	Krypton	84.758	54	×	Xenon 121 204	86	Rn	Radon	222.018	811	Ouo	Ununctium	in subsection in
	1	6	щ	Fluorine	17	ΰ	Chlorine 36 463	35	Ŗ	Bromine	79:904	23	-	lodine 	85	At	Astatine	209.987	117	Uus	Ununseptium	
	16	8	0	Oxygen	16	S	Suffur 30 Oct	34	Se	Selenium	78.971	52	۴	Tellurium	84	å	Polonium	208.982]	911	2	Livermonum	(act)
	ŧ	7	z	Nitrogen	15	4	Phosphorus 3n anz	33	As	Arsenic	74.922	51	Sb	Antimony Contract	8	B	Bismuth	208.980	115	Uup	Ununpentium	
	\$	6	υ	Carbon	14	Si	Silicon 28 086	32	ů	Germanium	72.631	20	S	Tin Tin	82	Pb	Lead	207.2	4	Ŧ	Flerovium	607
nts	Ę	5	8	Boron	13	A	Aluminum Se geo	IE IE	Ga	Gellum	69.723	49	<u>-</u>	Indium 114 etc	8	F	Thelium	204.383	Ē	Crit	Ununtrium	
eme)						1	90	Zn	2002 7	88.38	8	ບຶ	Cedmium 112 Ann	80	ВН	Mercury	200.592	112	ບົ	Copernicium	1.14
le El							ŧ	29	ບື	Copper	63.546	47	Ag	Silver 571 669		Ρn	Gold	196.967	Ξ	Rg	Roentgenium	[a.a]
of th							6	28	Ż	Nickel	26,693	46	Р	Paladum to an	78	Ę	Pladnum	195.085	0	õ	Demetedium	leng
able				6	27	ů	Cobalt	66,933	45	Ł	Rhodium erro ene	77	-	Iridium	192.217	601	ž	Meitnerium	lang			
ic Ta									Fe	lon a second	55.845	4	ß	Ruthenium	76	õ	Osmium	190.23	108	Ĥ	Hassium	[any]
eriodi							٢	25	μ	Manganese	54,938	4	ř	Technedum os corr	75	Re	Rhenium	186.207	107	В	Bohrium	[Lag
ď							9	24	ບ້	Chromium	51.996	42	ŝ	Molybdenum or or	74	≥	Tungstein	183.84	90	Sg	Seaborgium	[any]
							'n	23	>	Vanadium	80.942	4	f	Nobium on one	73	Та	Tantalum	150.948	105	å	Dubnium	1907
							4	22	i	Thenlum	47.867	40	Z.	Ziroonium or 334	72	μ	Hafhium	178.49	104	Ł	Putterlordum men	[Lap]
							m	21	š	Scandium	44.956	39	≻	Vitium ee ooe	57-71		Lanthanides		89-103		Actinides	
	7	4	Be	Beryllum	12	Ъ	Magnesium	20	Ca	Calcium	40.078	8	ې	Strontium ert en	56	Ba	Barlum	137.328	88	Ra	Padum 226 me	200.000
۰	Hydrogen	m		Lithium		Na	Sodium 27 een	19	¥	Potessium	39.058	37	ßЪ	Rubidium ou ueo	55	Ű	Cesium	132.505	87	Ļ	Francium 223 non	200,000

71	Lu	Lunetium	174.967	103	Ļ	Lawrencium	[262]	
2	٩۲	Ytterbium	173.055	102	Ŷ	Nobelium	259.101	
69	Tn	Thulium	168.934	101	PΣ	Mendelevium	268.1	
89	ц Ц	Erbium	167.259	0	Fm	Fermium	257.095	
67	f	Holmium	164.930	66	ñ	Einsteinium	[254]	
66	ò	Dyspicelum	162.500	86	Շ	Californium	251.080	
65	Тb	Terbium	158.925	97	B	Berkelium	247.070	
64	в	Gadolinium	157.25	96	с С	Ourium	247.070	
63	Eu	Europium	151.964	95	Am	Americium	243.061	
62	Sm	Samanum	150.36	94	Pu	Plutonium	244.064	
61	Pm	Promethium	144.913	93	ď	Neptunium	237.048	
60	PZ	Neodymium	144.243	92	⊃	Uranium	238.029	
23	ŗ	Presedynium	140.908	91	Pa	Protactinium	231.036	
8	ပီ	Certum	140.116	6	Ч	Thorium	232.038	
57	La	Lardhanum	138.905	68	Åç	Actinium	227.028	

COUS Total Networks edenomolecory

Actinide

Lanthanide

Noble Gas

Halogen

Nonmetal

Semimetal

Basic Metal

Alkaline Earth Transition Metal

Alkali Metal

A. Multiple choice (7 points): there may be one or more correct solutions, so circle all that apply

1. What is the order of heavy to light of 55 mol of the following substances

(a) $CH_4 > CO_2 > CO > HF$	(b) $CO_2 > CO > HF > CH_4$
(c) $CH_4 > HF > CO > CO_2$	(d) $HF > CO_2 > CO > CH_4$
2. The following statements are true about the b	lackbody radiation curve
(a) As T decreases, the peak moves to longer λ(c) As T increases, the peak intensity is higher	(b) As T increases, there is an ultraviolet catastrophe(d) none of the above
3. An electron's wave-particle duality is capture	d by
(a) the Schrodinger equation, $\hat{H} \psi_n(x) = E_n \psi_n(x)$ (c) the De Broglie relation, $p = h/\lambda$	(b) Heisenberg uncertainty, $(\Delta p)(\Delta x) \ge h/4\pi$ (d) all of the above
4. Which transition in Li ²⁺ occurs at the same er	nergy as the 4 \rightarrow 2 transition in He ⁺ ?
(a) $36 \rightarrow 9$	(b) $16 \rightarrow 1$
(c) $25 \rightarrow 4$	(d) none of the above
5. The wave function for the hydrogen atom	
(a) defines the exact position of the electron	(b) depends only on the principal quantum number
(c) always has both radial and angular nodes	(d) when squared gives the probability density
6. The way(s) in which many-electron atoms diff	fer from one-electron atoms
(a) s, p, and d sub-shells are no longer degenerate	(b) nuclear charge seen by e- in outer shell are reduced
(c) filled shells are stable due to lower screening	(d) Two paired electrons must occupy each AO
7. The periodic trends for ionization energy of a	n atom depends on
(a) Z-number	(b) Number of e-s between outer e- and nucleus
(c) electron distance from nucleus	(d) its electron configuration
Work S	pace

B. (10 points) Stoichiometry and acid etching

(a) (2 points) Hydrofluoric acid, HF, can be used to etch glass by reaction with solid SiO_2 (i.e. glass) to form silicon tetrafluoride (SiF₄) and water. Write a balanced equation for this reaction.

(b) (2 points) 500 mL of an 0.5M solution of HF is prepared. How many moles of HF does the solution contain?

(c)(3 points) A piece of glass weighing 10.00g is placed in the HF solution. How many moles of Si atoms does the glass sample contain?

(d)(3 points) After waiting long enough for the reaction to complete, predict the mass of SiF_4 produced. Answering this question requires your equation from (a) – skip if you could not do (a).

___ grams SiO₂

C. (8 points) Photoelectric effect and wave-particle duality. The photoelectric effect involves observing the way in which (i) the number of electrons emitted from a surface, and (ii) their kinetic energy (KE) depends on the radiation directed at the surface. For a particular metal surface, radiation of intensity 1.0 W cm⁻² and wavelength 300 nm yields electrons of kinetic energy 40 kJ mol⁻¹.

(a) (3 points) Predict the effect of increasing the intensity from 1.0 W cm⁻² to 2.0 W cm⁻² on the KE of the emitted electrons. (Circle your answer and explain your choice.)

KE of e- greater	KE of e- lesser	no difference in KE of e-
3 points) The work function of a r	naterial is the energy required	to remove an electron Calculate

(b) (3 points) The work function of a material is the energy required to remove an electron. Calculate the work function (eV) of the metal surface used in this experiment.

(c) (2 points) If the experiment is repeated with a new material, and no emitted electrons can be detected with radiation of intensity 1.0 W cm⁻² and wavelength 300 nm, what can you conclude? (Circle your answer and explain your choice.)

Φ metal 1 > Φ metal 2	Φ metal 1 = Φ metal 2	Φ metal 1 < Φ metal 2

-----Work Space-----

D. (6 points) Wavefunctions and nodes of the particle in a box. An experiment is performed in which an electron in a confined potential (i.e. like the particle in a box) is promoted from the n=1 energy level to the n=2 energy level with radiation of 400 nm.

(a)(2 points) How many nodes are there in the wavefunction of the n=1 state and the n=2 state of the particle in a box? (Complete the table provided.)

	# nodes
n=1	
n=2	

(b)(2 points) Predict the effect (on the electron) of changing the wavelength to 300 nm on the experiment giving a reason for your prediction.

(c) (2 points) For the original experiment of 400 nm light, calculate the length of the box.

-----Work Space------

E. (6 points) Atomic orbitals and their energy levels.

(a)(2 points) Ionization is the process of removing an electron from an atom or a molecule. Does this process give off energy or require energy? Explain your answer carefully.

(b) (2 points) Calculate the energy change associated with removing a 1s electron from He⁺.

(c) (2 points) Would you expect the ionization energy of the first 1s electron from He to be larger or smaller than the answer you obtained in (b)? (Circle your choice and explain.) ionization energy of a 1s in He⁺
 ionization of a 1s in He
 ionization of a 1s in He

F. (6 points) Ionic bonding

(a) (2 points) A pure substance does not conduct electricity in the solid state but it does dissolve in water and the resulting solution conducts electricity. The substance has a fairly high melting point. Is the substance an ionic compound or a covalent compound? State your reason.

(b) (2 points) Which of the following alkali metals: Na, K, and Rb, will have the shortest critical distance for electron transfer to occur with a fluorine atom, and why?

(c) (2 points) Given the following alkali metal halides: LiCl, KBr, and CsI, what is the order of their lattice energies (energy relative to the isolated ions) from largest to smallest? State the reason for your answer.

-----Work Space------

G. (10 points) Covalent bonding and Lewis structures.

(a)(4 points) Which of the following Lewis structures are correct (and good) Lewis structures and which are incorrect (or are correct but poor)? Explain what is wrong with the incorrect ones.

Structure	OK? (Yes/No)	Correction if no
:ö: н—о—s—о—н :0:		
$\left[\begin{array}{ccc} H & H \\ \left \begin{array}{c} H \\ H \\ \end{array} \right \\ H \\ \left[\begin{array}{c} H \\ \end{array} \right] \\ \left[\begin{array}{c} H \\ \end{array} \right] \\ H \\ H \\ \end{array} \\ H \\ H \\ \end{array} \right] + \left[\begin{array}{c} H \\ H \\ \end{array} \right] + \left[\begin{array}{c} H \\ H \\ \end{array} \right] \\ \left[\begin{array}{c} H \\ H \\ \end{array} \right] \\ \left[\begin{array}{c} H \\ H \\ \end{array} \right] \\ \left[\begin{array}{c} H \\ H \\ \end{array} \right] \\ \left[\begin{array}{c} H \\ H \\ \end{array} \right] \\ \left[\begin{array}{c} H \\ H \\ \end{array} \right] \\ \left[\begin{array}{c} H \\ H \\ \end{array} \right] \\ \left[\begin{array}{c} H \\ H \\ \end{array} \right] \\ \left[\begin{array}{c} H \\ H \\ H \\ \end{array} \right] \\ \left[\begin{array}{c} H \\ H \\ H \\ \end{array} \right] \\ \left[\begin{array}{c} H \\ H \\ H \\ \end{array} \right] \\ \left[\begin{array}{c} H \\ H \\ H \\ H \\ H \\ \end{array} \right] \\ \left[\begin{array}{c} H \\ H \\ H \\ H \\ H \\ \end{array} \right] \\ \left[\begin{array}{c} H \\ \end{array} \right] \\ \left[\begin{array}{c} H \\ H $		
: ĊI [⊕] : ĊI <u> </u> : ĊI <u></u> ĊI :		

(b)(3 points) The NO₂ molecule is partly responsible for brown color associated with photochemical smog. Draw a Lewis structures for this molecule including all relevant resonance forms and showing any formal charges.

(c) (3 points) Under some conditions of pressure and temperature, two NO₂ molecules can combine to form N₂O₄ molecules. Draw Lewis structures for N₂O₄