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1. A sealed water bottle of cross-sectional area A = 4.0× 10−3 m2 is filled with water. It also contains air
at atmospheric pressure (1 atm) that fills a volume of V0 = 2× 10−4 m3. The water bottle is brought
to a mountain where the external air pressure is 0.90 atm. Then the bottle is punctured 10.0 cm below
the water level. Assume the hole has a diameter of 1 mm. Note that 1 atm = 1.013×105 N/m2.

(a) What is the velocity of the water coming out of the hole immediately after the puncture?

(b) Does the answer in part (a) depend on the size of the hole? Why or why not?

(c) How different would the answer in part (a) be compared to if the the bottle was punctured at
normal atmospheric pressure (p = 1 atm)? Express your answer in % difference.

(d) Assume the air acts as an ideal gas and its temperature remains constant (p V = constant). Show
that the air pressure inside the bottle as a function of water height h above the hole is given by
P (h) = P0V0

A(h0−h)+V0 , where h0 is the initial water height.

(e) Using your answer from part (d), what is the velocity of the water coming out of the hole as a
function of height h of the water level above the hole? (Do not assume the kinetic energy of the
surface is negligible.)

Solution:

(Total points: 30)

We assume the flow can be considered steady and inviscid to use Bernoulli. The bottle is also rigid
enough that there is no deformation due to pressure changes.

a) The pressure inside the bottle is P0 = 1.013 × 105 N/m2. The pressure outside the bottle is
P1 = 0.90 atm = 0.91×105 N/m2. Bernoulli states that P0+ 1

2
ρwv

2
0 +ρwgz0 = P1+ 1

2
ρwv

2
1 +ρwgz1

(3 pts). Initially v0 ≈ 0 m/s and z0 = h0 = 10.0 cm (so z1 = 0 cm). This gives P0 + ρwgz0 =
P1 + 1

2
ρwv

2
1 (2 pts). So

v1 =

(
2(P0 − P1)

ρw
+ 2gz0

) 1
2

(1)

=

(
2(1.013× 105 − 0.91× 105)N/m2

1000kg/m3
+ 2× 9.81m/s2 × 0.1m

)1/2

(2)

= 4.7m/s(2pts) (3)

(Note that they could alternatively solved without assuming v0 ≈ 0.)

b) If we ignore the velocity of the top surface, then the answer doesn’t depend either on the size
of the top surface or the hole. This assumption only makes sense since A1 << A0. If we do not
ignore the velocity of the top surface, then the size of both matter. Namely, the surface velocity
is given in terms of the puncture velocity as v0 = A1

A0
v1 and this can be plugged into Bernoulli,

making the equation a function of A1. However because A1 << A0, the difference in solutions
is negligible.(5 pts)

c) In this case P0 = P1 (2 pts) and v1 =
√

2× 9.81× 0.1 (2pts) = 1.4 m/s (1 pt). This is 336%
difference. (Do not worry if they didn’t express as % difference correctly.)

d) Let Vh (and Ph) be the air volume (and pressure) when the water level has dropped to height
h. Thus P0V0 = PfVf . Also Vh = A(h0 − h) + V0. Then Ph = P0V0

A(h0−h)+V0 . (5 pts)

e) Using the solution from the previous part, Bernoulli becomes Ph + 1
2
ρwv

2
0 + ρwgh = P1 + 1

2
ρwv

2
1

(3 pts). Also from mass conservation A0v0 = A1v1, so v0 = A1

A0
v1 (3 pts) where A1 = 2.0× 10−5

m2. Therefore v1 = ((2(Ph−P1)
ρw

+ 2gh)(
A2

0

A2
0−A2

1
))

1
2 (2 pts) where Ph is as identified above. (This

answer can be left in terms of known variables.)
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1. (cont)
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2. Consider an elastic tube in which a section of the tube becomes weaker and expands. If the tube is an
artery this is known as an aneurysm. Suppose the native artery has a radius R = 1 cm and the blood
flow has a parabolic profile given by v(r) = vmax(1− r2

R2 ) at all cross-sections, with vmax = 50 cm/s in
the normal segments.

x
r

aneurysm segment
stent graft

normal segment

a) Qualitatively describe how the velocity and pressure change in aneurysmal segment compared to
the normal segment.

b) Suppose that the area inside of the aneurysm is approximately given by A(x) = A0 + sin(πx) for
0 < x < 1, where A0 is area of the normal healthy portion and x is normalized axial distance
along the aneurysm segment. Derive an expression for the fluid acceleration of a particle passing
through the aneurysm. The particle can be considered to remain along the center of the artery
(r = 0). (Hint: you will need to consider the continuity equation as well.)

c) As an engineer, you develop a “stent graft” to be placed inside the artery to shield the weakened
section. To know if the implant will remain secured, you need to know the total shear force applied
to the graft due to the blood flow. Suppose the stent graft also has a radius R = 1 cm and the
blood flow maintains a parabolic profile inside the graft. The viscosity of blood is 0.003 Pa·s. The
length of the stent graft is 10 cm.

Solution:

(Total points: 20)

a) From conservation of mass, the velocity would go down since the cross-sectional area is larger (3
pts), and thus from Bernoulli the pressure would increase since velocity decreases (3 pts). Since
the pressure increased, the tube becomes more likely to fail since it has increased pressure on
the weak section.

b) By continuity, the centerline velocity in the aneurysm is given by v(x) = vmax
A0

A0+sin(πx)
(3 pts).

The fluid acceleration is given by a = v · dv
dx

= −v2maxπ
A2

0

(A0+sin(πx))3
cos(πx) (3 pts).

c) The wall shear stress is given as τw = −µ dv
dr

∣∣
r=R

= µvmax
2
R

(3 pts) = 0.003Ns/m2×2×0.5m/s×
1

0.01
= 0.3N/m2 (1 pt). The total force is τwA = τw2πRL (3 pts) = 0.3N/m2×π×0.01m×0.1m =

0.0019N or 0.01884N rounding to 4 sig. figs. (1 pt).
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2. (cont)
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3. Oh no! James Bond has crashed his submarine car. Due to a rock slide, the car is pinned on its side at
a 45◦ angle. Unfortunately, the windows are bullet-proof and the car is perfectly sealed. Fortunately,
one of the doors is unobstructed and Bond is able to increase the internal cabin pressure p1 to 25%
above atmospheric by emptying the car’s oxygen tanks. Assume the door to be a 1×1 m2 square planar
surface. If the car is 3 m underwater, what is the force Bond needs to push on the end of the door
with for it to begin to open? The density of water is 1000 kg/m3. (Recall the Ixc = L4/12 for an L ×
L square.)

Lotus Esprit from 10th James Bond Engineer’s rendition of Bond’s crashed car

Solution: (Total Points: 20)
First calculate the centroid of area depth:

hc = hcar +
1

2
Ldoor sin 45◦(3)

hc = 3 +
1

2
(1) sin 45◦

hc = 3.3536m(1)

Then calculate effective force due to the water pressure:

FR = ρghcA(3)

FR = (1000)(9.81)(3.3536)(1)2

FR = 32.9kN(1)

To solve for the force Bond needs to exert, we will use the sum of moments about the door hinge. First we compute
the resultant force location

yR =
Ixc
ycA

+ yc(2)

While h is vertical depth, y is the point along the line parallel to the door (at 45◦). So:

yc =
hcar

sin 45
+

1

2
Ldoor(2)

yc =
3

sin 45
+ 0.5

yc = 4.7426m(1)

yR =
Ixc
ycA

+ yc

yR =
14

12

(4.7426)(12)
+ 4.7426

yR = 4.7602m(1)
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Thus, the force Bond has to exert, FB is found using the following:
(Note that we know the internal pressure is just exerting its force at the center of the door so the moment arm is 0.5m.)∑

M = 0(1)

FR

(
yR −

3

sin 45

)
− 101000× 0.25(12)0.5− FB(1) = 0(3)

FB = 4402N(2)
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3. (cont)
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Summary of Equations:

Chapter 1:

determine the dimensions of common physical quantities.
determine whether an equation is a general or restricted homogeneous equation.
use both BG and SI systems of units.
calculate the density, specific weight, or specific gravity of a fluid from a knowledge of any
two of the three.
calculate the density, pressure, or temperature of an ideal gas (with a given gas constant)
from a knowledge of any two of the three.
relate the pressure and density of a gas as it is compressed or expanded using Eqs. 1.14
and 1.15.
use the concept of viscosity to calculate the shearing stress in simple fluid flows.
calculate the speed of sound in fluids using Eq. 1.19 for liquids and Eq. 1.20 for gases.
determine whether boiling or cavitation will occur in a liquid using the concept of vapor
pressure.
use the concept of surface tension to solve simple problems involving liquid–gas or liquid–
solid–gas interfaces.

Some of the important equations in this chapter are:

Specific weight (1.6)

Specific gravity (1.7)

Ideal gas law (1.8)

Newtonian fluid shear stress (1.9)

Bulk modulus (1.12)

Speed of sound in an ideal gas (1.20)

Capillary rise in a tube (1.22)h !
2s cos u

gR

c ! 1kRT

Ev ! "
dp

dV"#V"

t ! m 
du
dy

r !
p

RT

SG !
r

rH2O@4 °C

g ! rg

30 Chapter 1 ■ Introduction

fluid 
units 
basic dimensions 
dimensionally 

homogeneous 
density 
specific weight 
specific gravity 
ideal gas law 
absolute pressure 
gage pressure
no-slip condition
rate of shearing strain
absolute viscosity
Newtonian fluid 
non-Newtonian fluid
kinematic viscosity
bulk modulus 
speed of sound 
vapor pressure 
surface tension
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Review Problems
Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Study
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Chapter 2:

Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Study

Guide for Fundamentals of Fluid Mechanics, by Munson et al.
(© 2009 John Wiley and Sons, Inc.).

Review Problems

Note: Unless otherwise indicated, use the values of fluid prop-
erties found in the tables on the inside of the front cover. Prob-
lems designated with an 1*2 are intended to be solved with the
aid of a programmable calculator or a computer. Problems des-
ignated with a 1 2 are “open-ended” problems and require crit-
ical thinking in that to work them one must make various
assumptions and provide the necessary data. There is not a
unique answer to these problems.

Answers to the even-numbered problems are listed at the
end of the book. Access to the videos that accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. The lab-type problems can also be accessed on
this web site.†

Problems

78 Chapter 2 ■ Fluid Statics

determine the magnitude, direction, and location of the resultant hydrostatic force acting on
a curved surface.
use Archimedes’ principle to calculate the resultant hydrostatic force acting on floating or
submerged bodies.
analyze, based on Eq. 2.2, the motion of fluids moving with simple rigid-body linear motion
or simple rigid-body rotation.

Some of the important equations in this chapter are:

Pressure gradient in a stationary fluid (2.4)

Pressure variation in a stationary incompressible fluid (2.7)

Hydrostatic force on a plane surface (2.18)

Location of hydrostatic force on a plane surface (2.19)

(2.20)

Buoyant force (2.22)

Pressure gradient in rigid-body motion (2.24)

Pressure gradient in rigid-body rotation (2.30)
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Chapter 3:

Several applications of the Bernoulli equation are discussed. In some flow situations, such
as the use of a Pitot-static tube to measure fluid velocity or the flow of a liquid as a free jet
from a tank, a Bernoulli equation alone is sufficient for the analysis. In other instances, such
as confined flows in tubes and flow meters, it is necessary to use both the Bernoulli equation
and the continuity equation, which is a statement of the fact that mass is conserved as fluid
flows.

The following checklist provides a study guide for this chapter. When your study of the
entire chapter and end-of-chapter exercises has been completed, you should be able to

write out meanings of the terms listed here in the margin and understand each of the related
concepts. These terms are particularly important and are set in italic, bold, and color type
in the text.
explain the origin of the pressure, elevation, and velocity terms in the Bernoulli equation
and how they are related to Newton’s second law of motion.
apply the Bernoulli equation to simple flow situations, including Pitot-static tubes, free jet
flows, confined flows, and flow meters.
use the concept of conservation of mass (the continuity equation) in conjunction with the
Bernoulli equation to solve simple flow problems.
apply Newton’s second law across streamlines for appropriate steady, inviscid, incompress-
ible flows.
use the concepts of pressure, elevation, velocity, and total heads to solve various flow prob-
lems.
explain and use the concepts of static, stagnation, dynamic, and total pressures.
use the energy line and the hydraulic grade line concepts to solve various flow problems.
explain the various restrictions on use of the Bernoulli equation.

Some of the important equations in this chapter are:

Streamwise and normal 
acceleration (3.1)

Force balance along a streamline
for steady inviscid flow (3.6)

The Bernoulli equation (3.7)
Pressure gradient normal to 
streamline for inviscid flow in (3.10b)
absence of gravity
Force balance normal to a 
streamline for steady, inviscid, (3.12)
incompressible flow
Velocity measurement for a 
Pitot-static tube (3.16)

Free jet (3.18)

Continuity equation (3.19)

Flow meter equation (3.20)

Sluice gate equation (3.21)

Total head (3.22) 
p
g

!
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2g
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 Q " z2b B 2g1z1 # z22
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132 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

steady flow
streamline
Bernoulli equation
elevation head
pressure head
velocity head
static pressure
dynamic pressure
stagnation point
stagnation pressure
total pressure
Pitot-static tube 
free jet 
volume flowrate 
continuity equation 
cavitation
flow meter 
hydraulic grade line 
energy line

JWCL068_ch03_093-146.qxd  8/19/08  10:30 PM  Page 132

Chapter 4:
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Some of the important equations in this chapter are:

Equation for streamlines (4.1)

Acceleration (4.3)

Material derivative (4.6)

Streamwise and normal components 
of acceleration (4.7)

Reynolds transport theorem (restricted form) (4.15)

Reynolds transport theorem (general form) (4.19)

Relative and absolute velocities (4.22)
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Problems 179

Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Study

Guide for Fundamentals of Fluid Mechanics, by Munson et al.
(© 2009 John Wiley and Sons, Inc.).

Review Problems

Problems
Note: Unless otherwise indicated, use the values of fluid prop-
erties found in the tables on the inside of the front cover. Prob-
lems designated with an (*) are intended to be solved with the
aid of a programmable calculator or a computer. Problems
designated with a (†) are “open-ended” problems and require
critical thinking in that to work them one must make various
assumptions and provide the necessary data. There is not a
unique answer to these problems.

Answers to the even-numbered problems are listed at the
end of the book. Access to the videos that accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. The lab-type problems can also be accessed on
this web site.

Section 4.1 The Velocity Field
4.1 Obtain a photograph/image that shows a flowing fluid. Print
this photo and write a brief paragraph that describes the flow in
terms of an Eulerian description; a Lagrangian description.
4.2 Obtain a photograph/image of a situation in which the
unsteadiness of the flow is important. Print this photo and write a
brief paragraph that describes the situation involved.

4.3 Obtain a photograph/image of a situation in which a fluid is
flowing. Print this photo and draw in some lines to represent how
you think some streamlines may look. Write a brief paragraph to
describe the acceleration of a fluid particle as it flows along one
of these streamlines.

4.4 The x- and y-components of a velocity field are given by
x and y, where V0 and are constants.

Make a sketch of the velocity field in the first quadrant
by drawing arrows representing the fluid velocity

at representative locations.

4.5 A two-dimensional velocity field is given by and
Determine the equation of the streamline that passes

through the origin. On a graph, plot this streamline.

4.6 The velocity field of a flow is given by 
where x, y, and z are in feet. De-

termine the fluid speed at the origin and on the x
axis 

4.7 A flow can be visualized by plotting the velocity field as
velocity vectors at representative locations in the flow as shown in
Video V4.2 and Fig. E4.1. Consider the velocity field given in 

1y ! z ! 02. 1x ! y ! z ! 0215z # 32 î " 1x " 42 ĵ " 4yk̂ ft$s,
V !

v ! 1.
u ! 1 " y

1x 7 0, y 7 02 !v ! #1V0 $!2u ! #1V0 $!2
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