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1. A sealed water bottle of cross-sectional area A = 4.0 x 1072 m? is filled with water. It also contains air
at atmospheric pressure (1 atm) that fills a volume of Vj = 2 x 107* m3. The water bottle is brought
to a mountain where the external air pressure is 0.90 atm. Then the bottle is punctured 10.0 cm below
the water level. Assume the hole has a diameter of 1 mm. Note that 1 atm = 1.013x10° N/m?.

(a)
(b)
(c)

(d)

(e)

What is the velocity of the water coming out of the hole immediately after the puncture?
Does the answer in part (a) depend on the size of the hole? Why or why not?

How different would the answer in part (a) be compared to if the the bottle was punctured at
normal atmospheric pressure (p = 1 atm)? Express your answer in % difference.

Assume the air acts as an ideal gas and its temperature remains constant (p V' = constant). Show
that the air pressure inside the bottle as a function of water height h above the hole is given by

P(h) = A(hﬁ—m, where hg is the initial water height.

Using your answer from part (d), what is the velocity of the water coming out of the hole as a
function of height h of the water level above the hole? (Do not assume the kinetic energy of the
surface is negligible.)

a)

c)

d)

c)

Solution:

(Total points: 30)

We assume the flow can be considered steady and inviscid to use Bernoulli. The bottle is also rigid
enough that there is no deformation due to pressure changes.

The pressure inside the bottle is Py = 1.013 x 10> N/m?. The pressure outside the bottle is
Py =0.90 atm = 0.91 x 105 N/m?. Bernoulli states that P0+%pwv§+pwgzo = Pl—l—%pwv%—i-pwgzl
(3 pts). Initially vg &~ 0 m/s and zp = hg = 10.0 cm (so z; = 0 cm). This gives Py + pugz0 =
Pi + $p,v? (2 pts). So
1
2(Fy — P 2
w= (BB 2 )
/2(1.013 x 105 — 0.91 x 10°)N/m?
B 1000kg/m?
=4.7m/s(2pts) (3)

1/2
+2 x 9.81m/s* x O.1m> (2)

(Note that they could alternatively solved without assuming vy ~ 0.)

If we ignore the velocity of the top surface, then the answer doesn’t depend either on the size
of the top surface or the hole. This assumption only makes sense since A; << Ag. If we do not
ignore the velocity of the top surface, then the size of both matter. Namely, the surface velocity
is given in terms of the puncture velocity as vy = ﬁ—;vl and this can be plugged into Bernoulli,
making the equation a function of A;. However because A; << Ay, the difference in solutions

is negligible.(5 pts)
In this case Py = P, (2 pts) and v; = v/2 x 9.81 x 0.1 (2pts) = 1.4 m/s (1 pt). This is 336%

difference. (Do not worry if they didn’t express as % difference correctly.)

Let Vj, (and Py) be the air volume (and pressure) when the water level has dropped to height

h. Thus PyVy = PyVy. Also Vi, = A(hg — h) + Vo. Then P, = 5528 (5 pts)

Using the solution from the previous part, Bernoulli becomes P, + % Pu¥s + pugh = P + % PuVs

(3 pts). Also from mass conservation Agvy = Ayv1, S0 vy = ﬁ—;vl (3 pts) where A; = 2.0 x 10—5

m?. Therefore v; = ((W + 2gh)(A(2)A+2A%))% (2 pts) where P, is as identified above. (This

answer can be left in terms of known variables.)
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1. (cont)
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2. Consider an elastic tube in which a section of the tube becomes weaker and expands. If the tube is an
artery this is known as an aneurysm. Suppose the native artery has a radius R = 1 cm and the blood
flow has a parabolic profile given by v(r) = Vpax(1 — ;—22) at all cross-sections, with v = 50 cm/s in
the normal segments.

aneurysm segment

normal segment/’_\ sten\%

| . |

PR e

R?

a) Qualitatively describe how the velocity and pressure change in aneurysmal segment compared to
the normal segment.

b) Suppose that the area inside of the aneurysm is approximately given by A(z) = Ay + sin(nzx) for
0 < x < 1, where A is area of the normal healthy portion and x is normalized axial distance
along the aneurysm segment. Derive an expression for the fluid acceleration of a particle passing
through the aneurysm. The particle can be considered to remain along the center of the artery
(r =0). (Hint: you will need to consider the continuity equation as well.)

c) As an engineer, you develop a “stent graft” to be placed inside the artery to shield the weakened
section. To know if the implant will remain secured, you need to know the total shear force applied
to the graft due to the blood flow. Suppose the stent graft also has a radius R = 1 cm and the
blood flow maintains a parabolic profile inside the graft. The viscosity of blood is 0.003 Pa-s. The
length of the stent graft is 10 cm.

Solution:
(Total points: 20)

a) From conservation of mass, the velocity would go down since the cross-sectional area is larger (3
pts), and thus from Bernoulli the pressure would increase since velocity decreases (3 pts). Since
the pressure increased, the tube becomes more likely to fail since it has increased pressure on
the weak section.

b) By continuity, the centerline velocity in the aneurysm is given by v(z) = /Umaon—i—i—%(wx) (3 pts).

The fluid acceleration is given by a = v - & = —vfnaxwm cos(mz) (3 pts).
¢) The wall shear stress is given as 7, = —p %L:R = [iUmaz 5 (3 pts) = 0.003N's/m? x 2x 0.5m/sx
561 = 0.3N/m? (1 pt). The total force is 7, A = 7,20 RL (3 pts) = 0.3N/m? x7wx0.01mx0.1m =

0.0019N or 0.01884N rounding to 4 sig. figs. (1 pt).
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2. (cont)
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3. Oh no! James Bond has crashed his submarine car. Due to a rock slide, the car is pinned on its side at
a 45° angle. Unfortunately, the windows are bullet-proof and the car is perfectly sealed. Fortunately,
one of the doors is unobstructed and Bond is able to increase the internal cabin pressure p; to 25%
above atmospheric by emptying the car’s oxygen tanks. Assume the door to be a 1x1 m? square planar
surface. If the car is 3 m underwater, what is the force Bond needs to push on the end of the door
with for it to begin to open? The density of water is 1000 kg/m?. (Recall the I,. = L*/12 for an L X

L square.)

Lotus Esprit from 10th James Bond

..............................

Hatch

3

CFi?

_, ﬂll’pmﬁ ssure

free surface

........................

e

Engineer’s rendition of Bond’s crashed car

Solution: (Total Points: 20)
First calculate the centroid of area depth:

the resultant force location

1
he = hear + iLdOOT sin 45°(3)

1
he =3+ 5(1) sin 45°
he = 3.3536m/(1)

Then calculate effective force due to the water pressure:

Fr = pghcA(3)
Fr = (1000)(9.81)(3.3536)(1)?
Fr = 32.9kN(1)

e

— 2
YA +5(2)

YR

hC(l’I” 1
c = -L oor 2
b sin 45 + 9 (2)
3
Yo = sin 45 +05

Yo = 4.7426m(1)

_ IZC
Yr = oA

+ Ye

14
Yr = —— L
(4.7426)(12)

yr = 4.7602m/(1)

+ 4.7426

To solve for the force Bond needs to exert, we will use the sum of moments about the door hinge. First we compute

While h is vertical depth, y is the point along the line parallel to the door (at 45°). So:

D . £
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Thus, the force Bond has to exert, Fg is found using the following:
(Note that we know the internal pressure is just exerting its force at the center of the door so the moment arm is 0.5m.)

> M=0(1)

3
F _
i (yR sin 45

Fp = 4402N(2)

) — 101000 x 0.25(1%)0.5 — Fp(1) = 0(3)

D oo ™



ME106: ODK1 Shawn Shadden ©UC Berkeley 2017

3. (cont)
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Summary of Equations:

Chapter 1:

Specific weight Y = pg
Specific gravity SG = —r
PH,0@4 °C
Ideal gas law p= LS
RT
. . du
Newtonian fluid shear stress T=W s
ly
Bulk modul E, ap
modulus =
4 i LTy
Speed of sound in an ideal gas ¢ = VkRT
20 cosf
Capillary rise in a tube h = a
YR

Chapter 2:

d
Pressure gradient in a stationary fluid 717 = -y
Pressure variation in a stationary incompressible fluid py=vh+ p,
Hydrostatic force on a plane surface Fr = vh.A
I.
Location of hydrostatic force on a plane surface Vg = *:4 + y,
Ve
Lyye
Xg = X,
R _VLA c
Buoyant force Fp=vy¥
L . ap 9 ap
Pressure gradient in rigid-body motion —— = pa,, ——— = pa,, ——— =1v + pa,
x dy az
T . 9 , 9 ap
Pressure gradient in rigid-body rotation —=pro, ——=0, —=-y
ar a0 az
Chapter 3:
StreamWTse and normal v V2
acceleration a=V-—  a,= -
’ as R

Force balance along a streamline dp 1, .
—+ -Vt gz = s
for steady inviscid flow J p 2 Vite=C (along a streamline)

The Bernoulli equation p + 3pV? + yz = constant along streamline
Pressure gradient normal to >
streamline for inviscid flow in [ __P v
absence of gravity on R

Force balance normal to a

. S v .
streamline for steady, inviscid, — p + pj— dn + yz = constant across the streamline
incompressible flow R

Velocity measurement for a N2 — 2 Vp
Y V="N2(p;—pilp

Pitot-static tube

h
Free jet V= 27— = V2gh
p
Continuity equation AV, = AV,0r Q) = 0,
2(p1 — P2
Flow meter equation 0=A (}71717_)2
pl1 — (A/A)]
. ‘ [28(z1 — )
Sluice gate equation Q=0b\|——F75
> 1 - (Zz/ Zl)2
p .
Total head y + 2 + z = constant on a streamline = H
8

Chapter 4:
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Equation for streamlines
Acceleration

Material derivative

Streamwise and normal components
of acceleration

Reynolds transport theorem (restricted form)

Reynolds transport theorem (general form)

Relative and absolute velocities

dy v

u
A% v v v
a=—+u—+tv—+w—_—

at ax dy 0z

PO 10 vy

Dt Jat

a :VLV a :LZ

: ds’ TR
PBor _ Bev o vibr — pAVi
Dt o P22V20y — P1A VD)
DB,

sys

d
= + «f1 dA
Ds 81L,pb dV J;pr fd

V=W+V,
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