
Chem 103 Midterm 1

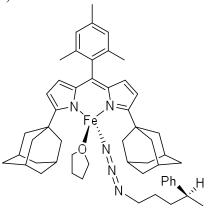
Prof. Chris Chang October 3rd, 2013

(16 pts)
(36 pts)
(60 pts)
(72 pts)
(24 pts)
(20 pts)
(22 pts)

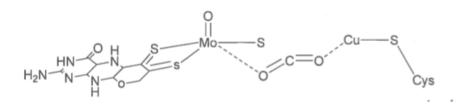
Total:	(250 pts)
--------	-----------

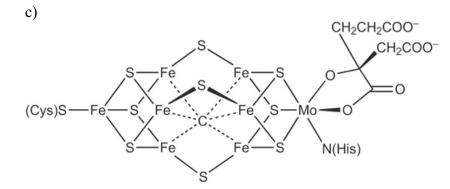
This exam has 14 pages. There is a periodic table on the final page for your reference.

1) Metals in Biology. (16 points)


Match each of the following roles/substances in the left column with a relevant metal from the list. You may use each metal once and only once:

Co	V	Fe	K	W	Cd	Bi	Zn	
N ₂ fi	xatio	n						
Hyd	roger	n prod	uctio	n/con	sumpt	tion		
Toxi	c hea	avy m	etal					
Vita	min I	312						
Halo	gena	tion						
Gene	e exp	ressio	n					
Neu	ronal	charg	e car	rier				
Anta	icid n	nedica	ation					

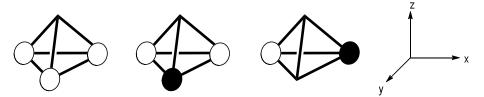

2) Electron Counting. (36 points)


- For the following complexes, determine: i. formal oxidation state of each metal center.
 - ii. d-electron counts for each metal center.
- iii. total electron count of the complex.

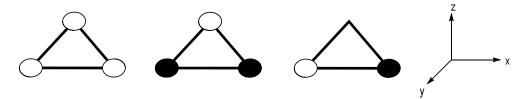
a)

b)

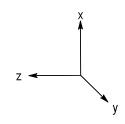
3) Valence Bond Theory and Molecular Orbital Theory. (60 points)


Hydrogen is a candidate fuel for carbon-neutral energy cycles, and current research is geared toward new ways to store it under ambient conditions. A promising material is the simple Lewis Acid/Base complex ammonia borane, H₃NBH₃.

a) Draw Lewis structures for NH₃ and BH₃. Designate which is a Lewis Acid and which is a Lewis Base.

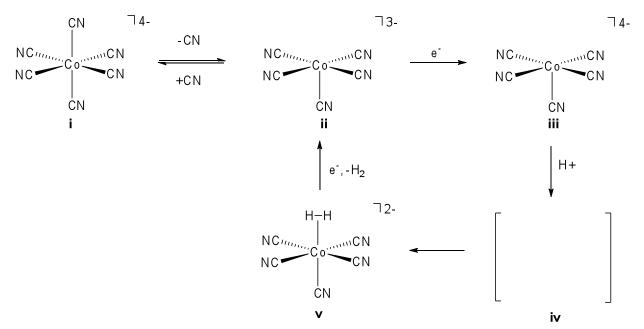

b) Make Valence Bond Theory (VBT) diagrams for NH₃ and BH₃.

c) Combining NH₃ and BH₃, make a Lewis structure and VBT diagram of H₃NBH₃.

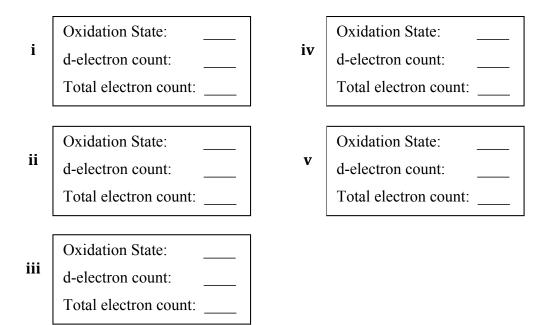

d) Using the SALCs and coordinate axes given below, make a molecular orbital (MO) diagram for NH₃ (remember you have seen this before).

e) Using the SALCs and coordinate axes given below, make a molecular orbital (MO) diagram for BH₃.

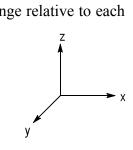
f) Using fragments from parts d) and e) and knowledge of Lewis Acid/Lewis Base complexes, make a MO diagram of H₃NBH₃ (use the coordinate axes given).

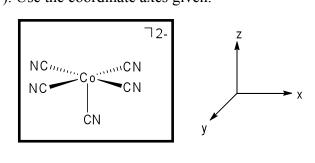


g) **Bonus:** For H_3NBH_3 , predict the product of release of 3 H_2 molecules. Include the chemical structure of this product.


4) Crystal Field Theory (72 points)

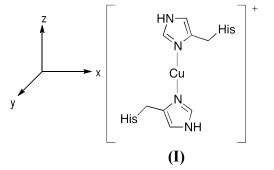
Generation of H_2 from non-carbon sources such as H^+ (from H_2O) is important for sustainable energy sources. One candidate platform is based on classic cyanide-metal complexes of the type $[(CN)_5ML]^{n}$.


a) For the following cycle, fill in the missing intermediate (iv).

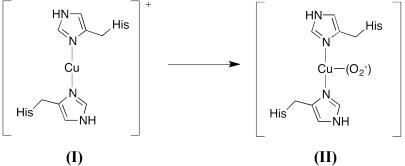

b) Give the oxidation state, d-electron count, and total electron count for (i) - (v) above.

c) Give the crystal field splitting for (i) - (v), showing how the field will change relative to each intermediate. Use the coordinate axes given.

d) Using the crystal field for the fragment shown below and the MO diagram for H_2 , draw a MO diagram for complex (v). Use the coordinate axes given.


Ligand	Hard, soft, or intermediate	σ-donor, π-donor, or π- acceptor	Prefers Fe ²⁺ or Ca ²⁺
Met S			
Cl			

5) Ligands. (24 points) Decide the properties for each ligand in the table below.


6) Crystal Field Theory (20 points)

The linear complex $[Cu(His)_2]^+$ is a potential therapeutic for restoring normal copper levels in the body.

a) Using the orientation given below, (i) Draw a crystal field diagram for $[Cu(His)_2]^+$ and (ii) determine the d-count and oxidation state for the metal center.

b) Under certain circumstances under long-term storage, an O_2 adduct of this compound can form, making the bound O_2 a superoxide (O_2^-). Draw a crystal field, showing how (I) changes to (II).

7) Molecular Orbital Theory (22 points)

Phosphorous is a limiting element on the planet required for DNA/RNA as well as other phosphate-containing metabolites and materials (e.g. bone).

a) Draw a MO diagram for the P_2 fragment. Use the coordinate axes given.

b) The P_2 fragment is reactive and can form higher adducts, such as P_3 . Using part (a) and an appropriate phosphorous source, make a MO diagram for P_3 .

×

			2									-									-			Е
$\frac{2}{\mathbf{He}}$	4.003 10	Ne	~	_	Ar	Argon 39.948	36	Kr	Krypton 83.80	54	Xe	Xenon 131.29	86	Rn	Radon (222)				71	Lu	Lutetium 174.967	103	\mathbf{Lr}	Lawrencium (262)
	6	H	Fluorine 18.9984032	17	IJ	Chlorine 35.4527	35	Br	Bromine 79.904	53	Ι	Iodine 126.90447	85	At	Astatine (210)				70	γb	Ytterbium 173.04	102	No	Nobelium (259)
	8	0	Oxygen 15,9994	16	S	Sulfur 32.066	34	Se	Selenium 78.96	52	Te	Tellurium 127.60	84	P_0	Polonium (209)				69	Tm	Thulium 168.93421	101	Md	Mendelevium (258)
	7	Z	Nitrogen 14.00674	15	Ρ	Phosphorus 30.973761	33	\mathbf{As}	Arsenic 74.92160	51	\mathbf{Sb}	Antimony 121.760	83	Bi	Bismuth 208.98038				68	Er	Erbium 167.26	100	Fm	Fermium (257)
	9	U	Carbon 12.0107	14		Silicon 28.0855	32	Ge	Germanium 72.61	50	Sn	Tin 118.710	82	Pb	Lead 207.2				67	Ho	Holmium 164.93032	66	Es	Einsteinium (252)
	5	B	Boron 10.811	13	Ы	Aluminum 26.981538	31	Ga	Gallium 69.723	49	In	Indium 114.818	81	L	Thallium 204.3833	113			99	Dy	Dysprosium 162.50	98	Cf	(251)
							30	Zn	Zinc 65.39	48	Cd	Cadmium 112.411	80	Нg	Mercury 200.59	112		(277)	65	Тb	Terbium 158.92534	97	Bk	Berkelium (247)
							29	Cu	Copper 63.546	47	\mathbf{Ag}	Silver 107.8682	<i>6L</i>	Au	Gold 196.96655	111		(272)	64	Gd	Gadolinium 157.25	96	Cm	Curium (247)
							28	ïZ	Nickel 58.6934	46	Pd	Palladium 106.42	78	Pt	Platinum 195.078	110		(269)	63	Eu	Europium 151.964	95	Am	Americium (243)
							27	Co	Cobalt 58.933200	45	Rh	Rhodium 102.90550	LL	Ir	Iridium 192.217	109	$\mathbf{M}^{Meimerium}$	(266)	62	Sm	Samarium 150.36	94	Pu	Plutonium (244)
							26	Fe	Iron 55.845	44	Ru	Ruthenium 101.07	76	õ	Osmium 190.23	108	HS Hassium	(265)	61	Pm	Promethium (145)	93	dΝ	Neptunium (237)
							25	Mn	Manganese 54.938049	43	Tc	Technetium (98)	75	Re	Rhenium 186.207	107	Bh	(262)	60	Nd	Neodymium 144.24	92	Ŋ	Uranium 238.0289
							24	Cr	Chromium 51.9961	42	M_0	Molybdenum 95.94	74	M	Tungsten 183.84	106	\mathbf{Sg}	(263)	59	Pr	Praseodymium 140.90765	91	Pa	Protactinium 231.03588
							23	>	Vanadium 50.9415	41	dΝ	Niobium 92.90638	73	Та	Tantalum 180.9479	105		(262)	58	Ce				
							22	Ï	Titanium 47.867	40	Zr	Zirconium 91.224	72	Ηf	Hafnium 178.49	104	Rf Rutherfordium	(261)						
							21	Sc	Scandium 44.955910	39	Υ	Yttrium 88.90585	57	La	Lanthanum 138.9055	89	\mathbf{Ac}^{Ac}	(227)						
	4	Be	Beryllium 9.012182	12	Mg	Magnesium 24.3050											\mathbf{Rad}							
$\mathbf{H}^{\mathrm{Hydrogen}}$	1.00794 3	Li	Lithium 6 941	11	Na	Sodium 22.989770	19	K	Potassium 39.0983	37	Rb	Rubidium 85.4678	55	C	Cesium 132.90545	87	$\mathbf{Fr}^{\mathrm{Francium}}$	(223)						

The Periodic Table of the Elements