Math 1B. Solutions to the Second Midterm

1. (16 points) Find the first four terms of the Maclauren series for

$$
f(x)=\frac{\cos x}{1+\ln (1+x)} .
$$

Note that you may want to find this in a manner other than by direct differentiation of the function.

From the formulas on the front of the exam, we have

$$
\begin{aligned}
\cos x & =1-\frac{x^{2}}{2}+\ldots \quad \text { and } \\
1+\ln (1+x) & =1+x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots
\end{aligned}
$$

The first four terms go up to the x^{3} term. Since both of the above series have nonzero constant term, we can find the answer, valid up to the x^{3} term, by long division ignoring all terms past the x^{3} term:

$$
\begin{aligned}
& \begin{array}{c}
\\
\left.1+x-\frac{x^{2}}{2}+\frac{x^{3}}{3} \quad \begin{array}{cccc}
1 & -x & +x^{2} & -\frac{11}{6} x^{3} \\
+0 x & -\frac{x^{2}}{2} & +0 x^{3}
\end{array}\right]
\end{array} \\
& \begin{array}{rrr}
1+x & -\frac{x^{2}}{2} & +\frac{x^{3}}{3} \\
\hline-x+0 x^{2} & -\frac{1}{1} x^{3}
\end{array} \\
& \begin{array}{rrr}
-x & -x^{2} & +\frac{1}{2} x^{3} \\
\hline & x^{2} & -\frac{5}{6} x^{3}
\end{array} \\
& \begin{array}{l}
x^{2}+x^{3} \\
-\frac{11}{6} x^{3}
\end{array} \\
& \begin{array}{r}
-\frac{11}{6} x^{3} \\
\hline 0
\end{array}
\end{aligned}
$$

Thus

$$
\frac{\cos x}{1+\ln (1+x)}=1-x+x^{2}-\frac{11}{6} x^{3}+\ldots .
$$

2. (18 points) (a). Find $T_{2}(x)$, the degree 2 Taylor polynomial of the function $f(x)=\sqrt{x}$ at $a=100$.

We have

$$
\begin{array}{rlrl}
f(x) & =\sqrt{x} & f(100) & =10 \\
f^{\prime}(x) & =\frac{1}{2} x^{-1 / 2} & f^{\prime}(100) & =\frac{1}{2} \cdot \frac{1}{10}=\frac{1}{20} \\
f^{\prime \prime}(x) & =-\frac{1}{4} x^{-3 / 2} & f^{\prime \prime}(100) & =-\frac{1}{4} \cdot \frac{1}{10^{3}}=-\frac{1}{4000}, \\
1
\end{array}
$$

and therefore

$$
\begin{aligned}
T_{2}(x) & =f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2} \\
& =10+\frac{1}{20}(x-100)-\frac{1}{8000}(x-100)^{2} .
\end{aligned}
$$

(b). How accurate is the approximation $T_{2}(x) \approx \sqrt{x}$ when $99.9 \leq x \leq 100.1$?

We use Taylor's Inequality with $n=2$ and $d=0.1$. We have

$$
f^{(n+1)}(x)=f^{\prime \prime \prime}(x)=\frac{3}{8} x^{-5 / 2}
$$

On the interval $[99.9,100.1]$ this has its maximum absolute value at $x=99.9$, so we can take

$$
M=\frac{3}{8 \cdot 99.9^{5 / 2}} .
$$

Therefore,

$$
\begin{aligned}
\left|f(x)-T_{2}(x)\right| & \leq \frac{M}{(n+1)!}|x-a|^{n+1} \\
& \leq \frac{3(0.1)^{3}}{8(3!)(99.9)^{5 / 2}}
\end{aligned}
$$

3. (18 points) Find the partial fraction decomposition of

$$
\frac{x^{3}+2 x}{x^{3}+1}=\frac{x^{3}+2 x}{(x+1)\left(x^{2}-x+1\right)} .
$$

First, note that the fraction is not a proper fraction:

$$
\frac{x^{3}+2 x}{x^{3}+1}=1+\frac{2 x-1}{x^{3}+1} .
$$

Given that the denominator $x^{3}+1$ factors as $(x+1)\left(x^{2}-x+1\right)$ (and that the quadratic factor has no real roots), the form of the partial fraction decomposition is as below.

Clearing denominators in the equation

$$
\frac{2 x-1}{x^{3}+1}=\frac{A}{x+1}+\frac{B x+C}{x^{2}-x+1}
$$

gives

$$
2 x-1=A\left(x^{2}-x+1\right)+(B x+C)(x+1) .
$$

Next, we plug some values into this equality in order to get equations in the unknowns A, B, and C :

$$
\begin{array}{llr}
x=-1 & \Longrightarrow & 3 A=-3 \\
x=0 & \Longrightarrow & A+C=-1 \\
x=1 & \Longrightarrow & A+2 B+2 C=1 .
\end{array}
$$

The first equation gives $A=-1$; using this, the second equation gives $C=0$; finally, using these two values, the third equation gives $B=1$. Therefore, the partial fraction decomposition is

$$
\frac{x^{3}+2 x}{x^{3}+1}=1-\frac{1}{x+1}+\frac{x}{x^{2}-x+1} .
$$

4. (18 points) Find $\int \frac{d x}{x^{2} \sqrt{x^{2}+4}}$.

Substitute $x=2 \tan \theta$. Then $d x=2 \sec ^{2} \theta d \theta$ and

$$
\sqrt{x^{2}+4}=\sqrt{4 \tan ^{2} \theta+4}=2 \sqrt{\tan ^{2} \theta+1}=2 \sec \theta .
$$

You can also see the latter by drawing a right triangle:

The integral is then

$$
\begin{aligned}
\int \frac{d x}{x^{2} \sqrt{x^{2}+4}} & =\int \frac{2 \sec ^{2} \theta d \theta}{4 \tan ^{2} \theta \cdot 2 \sec \theta} \\
& =\frac{1}{4} \int \frac{\sec \theta}{\tan ^{2} \theta} d \theta \\
& =\frac{1}{4} \int \frac{\cos \theta}{\sin ^{2} \theta} d \theta \\
& =\frac{1}{4} \int \csc \theta \cot \theta d \theta \\
& =-\frac{1}{4} \csc \theta+C \\
& =-\frac{1}{4} \cdot \frac{\sqrt{x^{2}+4}}{x}+C \\
& =-\frac{\sqrt{x^{2}+4}}{4 x}+C
\end{aligned}
$$

(Here we used the triangle to get the next to last line.)
5. (15 points) (a). Find the arc length of the curve $y=\frac{x^{2}}{2}-\frac{\ln x}{4}, 1 \leq x \leq 3$.

First, we have

$$
y^{\prime}=x-\frac{1}{4 x},
$$

so

$$
1+\left(y^{\prime}\right)^{2}=1+\left(x-\frac{1}{4 x}\right)^{2}=1+x^{2}-\frac{1}{2}+\frac{1}{16 x^{2}}=x^{2}+\frac{1}{2}+\frac{1}{16 x^{2}}=\left(x+\frac{1}{4 x}\right)^{2}
$$

so the arc length is

$$
\int_{1}^{3} \sqrt{1+\left(y^{\prime}\right)^{2}} d x=\int_{1}^{3}\left(x+\frac{1}{4 x}\right) d x=\left[\frac{x^{2}}{2}+\frac{\ln x}{4}\right]_{1}^{3}=\frac{9}{2}+\frac{\ln 3}{4}-\frac{1}{2}=4+\frac{\ln 3}{4} .
$$

(b). Find the arc length function for this curve, with starting point $(1,1 / 2)$.

The integrand is the same as in part (a), except that x is changed to t. The arc length function is:

$$
s(x)=\int_{1}^{x} \sqrt{1+\left(\frac{d}{d t}\left(\frac{t^{2}}{2}-\frac{\ln t}{4}\right)\right)^{2}} d t=\left[\frac{t^{2}}{2}+\frac{\ln t}{4}\right]_{1}^{x}=\frac{x^{2}}{2}+\frac{\ln x}{4}-\frac{1}{2} .
$$

6. (15 points) A lamina with uniform density $2 \mathrm{~g} / \mathrm{cm}^{2}$ occupies the region in the $x y$-plane bounded by the curves $y=x^{2}, y=9 x$, and $x=3$. Here x and y are measured in cm .

Find the moments of the lamina with respect to the x - and y-axes.
(Actually, there are two regions bounded by the indicated curves:

$$
x^{2} \leq y \leq 9 x, \quad 0 \leq x \leq 3 \quad \text { and } \quad x^{2} \leq y \leq 9 x, \quad 3 \leq x \leq 9 .
$$

We will give the answer for the first region. The answer for the other region is computed by integrating the same integrands from 3 to 9 .)

The moment with respect to the y-axis is

$$
M_{y}=2 \int_{0}^{3} x\left(9 x-x^{2}\right) d x=2 \int_{0}^{3}\left(9 x^{2}-x^{3}\right) d x=2\left[3 x^{3}-\frac{x^{4}}{4}\right]_{0}^{3}=\left(6 \cdot 3^{3}-\frac{3^{4}}{2}\right) \mathrm{g} \mathrm{~cm},
$$

and the moment with respect to the x-axis is

$$
\begin{aligned}
M_{x} & =2 \int_{0}^{3} \frac{1}{2}\left((9 x)^{2}-\left(x^{2}\right)^{2}\right) d x=\int_{0}^{3}\left(81 x^{2}-x^{4}\right) d x \\
& =\left[27 x^{3}-\frac{x^{5}}{5}\right]_{0}^{3}=\left(27 \cdot 3^{3}-\frac{3^{5}}{5}\right) \mathrm{g} \mathrm{~cm} .
\end{aligned}
$$

