# Final Exam Solution: Problem 1 <br> Physics 7A, UC Berkeley, Fall 2010, Prof. A. Yildiz <br> Grader: Aaron Alpert 

## Part A



We use $F=m a$ and $\tau_{C M}=I_{C M} \alpha$ to find the linear and rotational acceleration. Since they are both constant, we can use the basic kinematics formulas to find the velocities.

$$
\begin{align*}
\sum F & =F-f=F-\mu_{k} m g=m a \quad \rightarrow \quad a=\frac{F}{m}-\mu_{k} g  \tag{1}\\
v & =v_{0}+a t=\left(\frac{F}{m}-\mu_{k} g\right) t  \tag{2}\\
\sum \tau & =F(r-h)-f r=I \alpha=\frac{2}{5} m r^{2} \alpha \quad \rightarrow \quad \alpha=\frac{5}{2 m r^{2}}\left[F(r-h)-\mu_{k} m g r\right]  \tag{3}\\
\omega & =\omega_{0}+\alpha t=\frac{5 t}{2 m r^{2}}\left[F(r-h)-\mu_{k} m g r\right] \tag{4}
\end{align*}
$$

We know that at time $t_{0}$, the angular and linear speeds are related by $\omega_{0}=2 v_{0} / r$. Thus, we plug (2) and (4) into this relationship.

$$
\begin{align*}
& \omega_{0}=\frac{2 v_{0}}{r} \rightarrow \frac{5 t}{2 m r^{2}}\left[F(r-h)-\mu_{k} m g r\right]=\frac{2}{r}\left(\frac{F}{m}-\mu_{k} g\right) t \rightarrow \\
& F-F \frac{h}{r}-\mu_{m} g=\frac{4}{5}-\frac{4}{5} \mu_{k} m g \quad \rightarrow \quad \frac{1}{5}\left(F-\mu_{k} m g\right)=F \frac{h}{r} \quad \rightarrow \quad h=\frac{r}{5}-\frac{\mu_{k} m g r}{5 F} \tag{5}
\end{align*}
$$

Grading Rubric. This part was worth 10 points, and broken down as follows: +2 for the FBD; +4 for the force and torque equations; +2 for finding $v(t)$ and $\omega(t) ;+2$ for solving for $h$.

## Part B: Force Method

Kinematics. There is now no cue force, but the friction is the same as in the FBD above. We use force and torque (about the CM) to find (constant) accelerations, which we use to calculate velocities.

$$
\begin{align*}
& \sum F=-f=-\mu_{k} m g=m a \quad \rightarrow \quad a=-\mu_{k} g \quad \rightarrow \quad v=v_{0}-\mu_{k} g t  \tag{6}\\
& \sum \tau=-f r=\frac{2}{5} m r^{2} \alpha \quad \rightarrow \quad \alpha=-\frac{5 \mu_{k} g}{2 r} \quad \rightarrow \quad \omega=\omega_{0}-\frac{5}{2 r} \mu_{k} g t \tag{7}
\end{align*}
$$

Determining the Final Direction of $v$. Let us assume that $v$ reaches zero before $\omega$ reaches $-v / r$. (In other words, this would be the case when the ball switches directions an rolls backwards.)

$$
\begin{equation*}
v: \quad 0=v_{0}-\mu_{k} g t_{0} \quad \rightarrow \quad t_{0}=\frac{v_{0}}{\mu_{k} g} ; \quad \omega: \quad 0=\frac{2 v_{0}}{r}-\frac{5}{2 r} \mu_{k} g t_{0} \quad \rightarrow \quad t_{0}=\frac{4}{5} \frac{v_{0}}{\mu_{k} g} \tag{8}
\end{equation*}
$$

Clearly, the angular velocity reaches zero before the linear one does, which indicates that the final direction of $\mathbf{v}$ is to the right. At some time $t^{*}$, we have the rolling without slipping condition $v=-\omega r$. (The negative sign is there because counter-clockwise rotation was defined to be positive.) Applying this condition at $t^{*}$,

$$
\begin{align*}
& v=v_{0}-\mu_{k} g t^{*}=-\omega r=-\left(2 v_{0}-\frac{5}{2} \mu_{k} g t^{*}\right) \rightarrow \frac{7}{2} \mu_{k} g t^{*}=3 v_{0} \rightarrow t^{*}=\frac{6 v_{0}}{7 \mu_{k} g}  \tag{9}\\
& v_{\text {final }}=v\left(t^{*}\right)=v_{0}-\mu_{k} g t^{*}=v_{0}-\mu_{k} g\left(\frac{6 v_{0}}{7 \mu_{k} g}\right)=v_{0}-\frac{6}{7} v_{0}=\frac{1}{7} v_{0} \tag{10}
\end{align*}
$$

Grading Rubric. This part was worth 10 points and broken down as follows: +2 for force and torque equations; +1 for velocities as functions of time; +3 for proving that the final velocity is to the right; +2 for imposing rolling without slipping; +2 for solving the final velocity's magnitude.

## Part B: Angular Momentum Method

Choose a point $O$ on the table. There is only one force (friction) acting on the ball after the initial hit. The friction acts on point $P$, which is also in contact with the table. Therefore, $\mathbf{r}=\overrightarrow{O P}$ is parallel to the table. The frictional force $\mathbf{f}$ is also parallel to the table. The torque due to friction is $\boldsymbol{\tau}=\mathbf{r} \times \mathbf{f}=0$ because the cross product of two parallel vectors is zero. Because $\boldsymbol{\tau}=\frac{d \mathbf{L}_{O}}{d t}$ and $\boldsymbol{\tau}=0$, we know that $\mathbf{L}_{O}$ is a constant, i.e., the angular momentum about $O$ is conserved. This momentum has two components: one due to the spinning of the ball, and one due to the fact the CM "rotates" about $O$.

$$
\begin{equation*}
\mathbf{L}_{O, i n i t}=\overline{\mathbf{L}}+\overline{\mathbf{r}} \times m \overline{\mathbf{v}}=\left(\frac{2}{5} m r^{2} \frac{2 v_{0}}{r}-m r v_{0}\right) \mathbf{k}=-\frac{1}{5} m r v_{0} \mathbf{k} \tag{11}
\end{equation*}
$$

We note that the angular momentum is negative, meaning that when rolling without slipping sets in, the rotation will be negative, which is defined as clockwise. This implies the final velocity will be to the right.

We now express the final angular momentum (dropping the vector $\mathbf{k}$ for convenience), keeping in mind the rolling without slipping condition $v_{f}=-\omega_{f} r$.

$$
\begin{equation*}
L_{O, f i n a l}=\frac{2}{5} m r^{2}\left(\frac{-v_{f}}{r}\right)-m r v_{f}=-\frac{7}{5} m r v_{f} \tag{12}
\end{equation*}
$$

Applying the conservation of angular momentum,

$$
\begin{equation*}
L_{O, \text { init }}=L_{O, \text { final }} \quad \rightarrow \quad-\frac{1}{5} m r v_{0}=-\frac{7}{5} m r v_{f} \quad \rightarrow \quad v_{f}=\frac{1}{7} v_{0} \tag{13}
\end{equation*}
$$

Grading Rubric. This part is worth 10 points, broken down as follows: +3 calculation of initial angular momentum; +3 calculation of final angular momentum; +3 direction of final velocity; +1 using ang. mo. conservation to calculate final velocity.
a.)

$$
\begin{aligned}
& p_{1} h_{c}+\frac{\partial}{\partial} p l_{s}^{2}+p_{c}=\rho g h_{2}+\frac{1}{\partial} l_{2}^{2}+P_{2} ; \quad P_{c}=P_{2}=1 \mathrm{~atm} \\
& \text { and } V_{c}=0 \\
& R g h=\frac{1}{7} \phi V_{\theta}{ }^{n} \\
& n_{-}-h_{2}=h \\
& \sqrt{\partial g h}=V_{2} \\
& A_{1} V_{1}=A_{2} V_{2} \\
& V_{1}=\frac{A_{2}}{A_{1}} V_{2}=\frac{\sqrt{2 g h}}{4}=\sqrt{\frac{g h}{8}}=V_{1}
\end{aligned}
$$

b.) $P_{a}=1$ intm ble exposed to air. Can hla vee Bornoull's whuluto $2_{n}$

$$
\begin{aligned}
& P_{1}+p g h_{1}+\frac{1}{2} \rho V_{1}{ }^{2}=p_{1}+\rho g h_{2}+\frac{1}{\partial} p v_{2}{ }^{2} \quad h_{2}=h_{1} \\
& P_{1}=P_{\text {atm }}+\frac{1}{\partial}\left(V_{D}^{2}-V_{1}^{2}\right) \\
& P_{2}=P_{\text {atm }}=101 \times 10^{3} D_{a}=1 \mathrm{~atm} \\
& P_{1}=P_{\text {atn }}+\frac{1}{f} p\left(p g h-\frac{2 g h}{16}\right) \\
& \left.P_{1}=P_{a t m}+\frac{15}{16} p g h \right\rvert\,
\end{aligned}
$$

C.)

$$
\begin{aligned}
& A_{c} V_{c}=A_{\partial} V_{\theta} \\
& V_{c}=\frac{A_{1} V_{2}}{A_{c}} \\
& V_{c}=\frac{\sqrt{2 g h}}{100} \\
& V_{c}=-\frac{d h}{d t} \Rightarrow \frac{\partial h}{\partial t}=\frac{\sqrt{2 a h}}{100} \\
& \int_{h_{0}}^{h} \frac{d h}{\sqrt{h}}=-\int_{0}^{\frac{1}{2 g}} \frac{20}{100} d t \\
& 2\left(\sqrt{h}-\sqrt{h_{0}}\right)=-\frac{\sqrt{29}}{100} t \\
& \sqrt{h}=\frac{-\sqrt{2 g}}{200} t+\sqrt{h_{0}} \\
& \text { So }
\end{aligned}
$$

$\longrightarrow$ how solve for $h=0 ; h_{0}=\frac{1}{10} \mathrm{~m}$

$$
\begin{aligned}
& 0=\frac{-\sqrt{2 y}}{200} t+\sqrt{\frac{1}{10}} \\
& t=\frac{200}{\sqrt{2 y}} \cdot \frac{1}{\sqrt{10}} \approx 14.29 \mathrm{sec} .
\end{aligned}
$$



$$
\begin{align*}
& \Sigma F_{y}=\mu_{s} N+T_{\cos \phi}-m g \sin \theta=0  \tag{a}\\
& \Sigma F_{x}=N-T \sin \phi-m g \cos \theta=0  \tag{2}\\
& \Sigma \tau_{B}=T h \sin \phi-m g r \sin \theta=0 \tag{3}
\end{align*}
$$

- (Alternatively use $\sum \tau_{A}=N h-m g(h \cos \theta+r \sin \theta)=0$ )
(3): $T=\frac{m g r \sin \theta}{h \sin \phi}$
(1): $\mu_{s} N=m g \sin \theta-T_{\cos \phi}=m g \sin \theta-\frac{m g r \sin \theta \cos \phi}{h \sin \phi}$
(2): $N=T \sin \phi+m g \cos \theta=\frac{m g r \sin \theta \sin \phi}{h \sin \phi}+m g \cos \theta$

$$
\mu_{s}=\frac{(1)}{(2)}=\frac{m g \sin \theta\left(1-\frac{r \cos \phi}{h \sin \phi}\right)}{m g \sin \theta\left(\frac{r}{h}+\frac{\cos \theta}{\sin \theta}\right)}=\frac{(h-r \cot \phi)}{r(r+h \cot \theta)}
$$

Problem 4
(a)

$$
\begin{aligned}
& E_{k}=\frac{1}{2} k\left(\Delta x_{0}\right)^{2}=\frac{1}{2} \times 3 \times 0.3^{2}=0.135(\mathrm{~J}) \\
& E_{k, t}=\frac{1}{2} M v^{2} \\
& E_{k, r}=\frac{1}{2} I \omega^{2}=\frac{1}{2}\left(\frac{1}{2} M r^{2}\right) \omega^{2}=\frac{1}{4} M v^{2} \\
& \left\{\begin{array}{l}
E_{k, t} / E_{k} r=2 \\
E_{k, t}+E_{k, r}=E_{k}=0.135(\mathrm{~J})
\end{array}\right. \\
& \therefore\left\{\begin{array}{l}
E_{k, t}=0.09(\mathrm{~J}) \\
E_{k, r}=0.045(\mathrm{~J})
\end{array}\right.
\end{aligned}
$$

(b)

$M g$

$$
\left\{\begin{array}{l}
F-f_{s}=M a \\
r f_{s}=I \alpha=\frac{1}{2} M r^{2} \alpha \\
r \alpha=a \\
\Downarrow \\
f_{s}=\frac{1}{3} r
\end{array}\right.
$$

$$
\begin{aligned}
F_{\text {net }} & =F-f_{s}=\frac{2}{3} F=\frac{2}{3}(-k x) \\
\therefore a & =\frac{F \text { net }}{M}=-\frac{2 k}{3 M} x \Rightarrow \ddot{x}=-\frac{2 k}{3 M} x \\
\omega & =\sqrt{\frac{2 k}{3 M}} \quad, \quad T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{3 M}{2 k}} .
\end{aligned}
$$

If you plug in the numerical value for $k$ you should get $T=2 \pi \sqrt{\frac{M}{2}}=4.44 \sqrt{M}$

Problem 5
(a)


At position $y$, we have

$$
T(y)=\mu y g
$$

$T(y)$ is the ternion in the rope at position $y$, and $\mu$ is the macs in per unit length.
Thus the wave velocity (for trameverse waves) is

$$
V=\sqrt{\frac{T(y)}{\mu}}=\sqrt{g y}
$$

(b)

$$
\begin{aligned}
& \text { b) } \quad v(y)=\sqrt{g y} \Rightarrow \frac{d y}{d t}=\sqrt{g y} \\
& \Rightarrow d t=\frac{d y}{\sqrt{g y}} \Rightarrow \int_{0}^{t_{0}} d t=\int_{0}^{L} \frac{d y}{\sqrt{g y}} \\
& \therefore t_{0}=2 \sqrt{\frac{L}{g}}
\end{aligned}
$$

Problem 6

$$
\left\{\begin{array}{l}
h_{1}=0.125 \mathrm{~m} \\
h_{2}=0.395 \mathrm{~m}
\end{array}\right.
$$

we have no resonance between $h_{1}$ and $h_{2}$, so we have

$$
\begin{aligned}
& \frac{\lambda}{2}=h_{2}-h_{1} \\
\therefore \lambda & \lambda\left(h_{2}-h_{1}\right)=2 \times 0.27=0.54(\mathrm{~m}) \\
f & =\frac{V}{\lambda}=\frac{343}{0.54}=635\left(\mathrm{H}_{2}\right)
\end{aligned}
$$

The picture is roughly (although not strictly) like the way below


Problem 7 Solution
a) Bernoulli's Equation is: $\quad P_{i}+\frac{1}{2} \operatorname{piv}_{i}^{2}+\rho i g y_{i}=$ constant

Apply Bernoulli's Equation at both sides of the output hale

$$
\Rightarrow P_{A}+\frac{1}{2} P_{A} v_{A}^{2}+P_{A} g y_{A}=P_{B}+\frac{1}{2} P_{B} v_{B}^{2}+P_{B} g y_{B}
$$

Now, $P_{A}=P$

$$
P_{B}=P_{0}
$$

$$
\rho_{A} \approx \rho_{B}=e
$$

$$
V_{A} \approx 0
$$

$y_{A} \approx y_{B}$ (taken immediately in front of and behind output hole)
Then

$$
\begin{aligned}
& \Rightarrow P+\frac{1}{2} P V_{A}^{2}+\rho g y_{A}=P_{0}+\frac{1}{2} \rho V_{B}^{2}+\rho g y_{B} \\
& \Rightarrow \frac{1}{2} P V_{B}^{2}=P-P_{0}+\rho g\left(y_{A}-y_{B}\right) \\
& \Rightarrow V_{B}=\sqrt{\frac{2\left(P-P_{0}\right)}{\rho}} \text {-emission speed of the pro }
\end{aligned}
$$


b) From the momentum-impulse theorem, $F=\frac{d p}{d t}$.

The fire on the exiting gas by the "racket" is $F_{g}=\frac{d p}{d t} \times V_{B} \frac{d m}{d t}$.
$\frac{d m}{d t}$ is the mass flow out of the rocket: $\frac{d m}{d t}=e \frac{d V}{d t}=\rho A_{0} V_{B}$,
Therefore, $F_{g}=\frac{d p}{d t}=v_{B} \frac{d m}{d t}=v_{B}\left(\rho A_{0} v_{B}\right)=\rho A_{0} v_{B}^{2}$ volume flow ont of the rocket

From Newton's Third Law, the force the gas applies an the "rocket" is equal and apposite to the force the "rocket" applies on the gas. Therefore... $\vec{F}_{g}=-\vec{F}_{r}$, ar $\left|\vec{F}_{g}\right|=\left|\vec{F}_{r}\right|$
Then, $\left|\vec{F}_{r}\right|=\left|\vec{F}_{g}\right|=\rho A_{0} V_{B}^{2}$
Substituting $V_{B}$ from part a), $\Rightarrow\left|\vec{F}_{r}\right|=\rho A_{0}\left(\sqrt{\frac{2\left(P-P_{0}\right)}{\rho}}\right)^{2}=p A_{0} \cdot \frac{2\left(P-P_{0}\right)}{Q}$
$\Rightarrow\left|\vec{F}_{r}\right|=2 A_{0}\left(P-P_{0}\right)$-thrust force on the racket due to the emitted gases

