University of California, Berkeley	Last name:	
Mechanical Engineering	First name:	
ME 106, Fluid Mechanics	Student ID:	
ODK/MIDTERM 2, FALL 2015	Discussion:	

Notes:

• You solution procedure should be legible and complete for full credit (use scratch paper as needed).

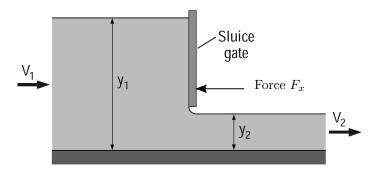
Question	Grade
1	
2	
3	
Total:	

1. Consider the unsteady, incompressible, 2D flow described by the velocity field

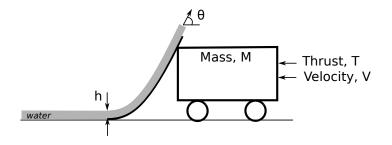
$$u = y^2 + t$$
$$v = x^2$$

- (a) Find the equation, x(y) or y(x), for the streamline passing through point (0,0) at time t = 0.
- (b) Find the equations, x(t) and y(t), describing a pathline originating at point (0,0) at time t = 0.
- (c) Calculate the acceleration of a fluid particle at point (0,0) at time t = 0.

- 2. A sluice gate of width b into the page controls the flow of water by raising or lowering a vertical plate. The water exerts a force \mathbf{F} on the gate. Let ρ be the water density and other variables be as shown in the diagram. Disregarding the wall shear forces at the solid surfaces, and assuming steady, uniform flow:
 - (a) Solve for the horizontal component of the force, F_x , the water imposes on the gate. Express answer in terms of $(\rho, y_1, y_2, b, g \text{ and } V_1)$
 - (b) Based on the expression you derived above, derive an expression for y_2 when F_x is a maximum. Assume V_1 and y_1 remain constant.



- 3. A vehicle of mass M scoops stationary water of density ρ with depth h and width b into the page, creating an upward jet with angle θ . Assume the incoming and outgoing stream of water on the scoop have the same area. Neglect air drag, wheel friction and gravity effects.
 - (a) Determine the thrust T to maintain a constant acceleration a in terms of the variables given.
 - (b) Assume that the trust is removed (T = 0), hence the rocket decelerates from initial velocity V_0 at t = 0. Based on the expression you derived above, find the expression for the velocity V(t) as a function of time (note: $a = \frac{dV}{dt}$).



Summary of Equations: Chapter 4:

Equation for streamlines	$\frac{dy}{dx} = \frac{v}{u}$
Acceleration	$\mathbf{a} = \frac{\partial \mathbf{V}}{\partial t} + u \frac{\partial \mathbf{V}}{\partial x} + v \frac{\partial \mathbf{V}}{\partial y} + w \frac{\partial \mathbf{V}}{\partial z}$
Material derivative	$\frac{D(\)}{Dt} = \frac{\partial(\)}{\partial t} + (\mathbf{V} \cdot \nabla)(\)$
Streamwise and normal components of acceleration	$a_s = V \frac{\partial V}{\partial s}, \qquad a_n = \frac{V^2}{\Re}$
Reynolds transport theorem (restricted form)	$\frac{DB_{\rm sys}}{Dt} = \frac{\partial B_{\rm cv}}{\partial t} + \rho_2 A_2 V_2 b_2 - \rho_1 A_1 V_1 b_1$
Reynolds transport theorem (general form)	$\frac{DB_{\rm sys}}{Dt} = \frac{\partial}{\partial t} \int_{\rm cv} \rho b dV + \int_{\rm cs} \rho b \mathbf{V} \cdot \hat{\mathbf{n}} dA$
Relative and absolute velocities	$\mathbf{V} = \mathbf{W} + \mathbf{V}_{cv}$

Chapter 5:

Conservation of mass	$\frac{\partial}{\partial t} \int_{cv} \rho d\Psi + \int_{cs} \rho \mathbf{V} \cdot \hat{\mathbf{n}} dA = 0$
Mass flowrate	$\dot{m} = \rho Q = \rho A V$
Average velocity	$\overline{V} = \frac{\int_{A} \rho \mathbf{V} \cdot \hat{\mathbf{n}} dA}{\rho A}$
Average velocity	1
Steady flow mass conservation	$\sum \dot{m}_{\rm out} - \sum \dot{m}_{\rm in} = 0$
Moving control volume mass conservation	$\frac{\partial}{\partial t} \int_{cv} \rho d\Psi + \int_{cs} \rho \mathbf{W} \cdot \hat{\mathbf{n}} dA = 0$
Deforming control volume mass conservation	$\frac{DM_{\rm sys}}{Dt} = \frac{\partial}{\partial t} \int_{\rm cv} \rho d\Psi + \int_{\rm cs} \rho \mathbf{W} \cdot \hat{\mathbf{n}} dA = 0$
Force related to change in linear momentum	$\frac{\partial}{\partial t} \int_{\text{cv}} \mathbf{V} \rho d\mathbf{V} + \int_{\text{cs}} \mathbf{V} \rho \mathbf{V} \cdot \mathbf{\hat{n}} dA = \sum \mathbf{F}_{\text{contents of the control volume}}$
Moving control volume force relation to change in linear momentum	ated $\int_{cs} \mathbf{W} \rho \mathbf{W} \cdot \hat{\mathbf{n}} dA = \sum \mathbf{F}_{\text{contents of the control volume}}$
Vector addition of absolute and r	elative velocities $\mathbf{V} = \mathbf{W} + \mathbf{U}$